35 resultados para Forecasting of electricity market prices
Resumo:
This paper focuses upon the policy and institutional change that has taken place within the Argentine electricity market since the country’s economic and social crisis of 2001/2. As one of the first less developed countries (LDCs) to liberalise and privatise its electricity industry, Argentina has since moved away from the orthodox market model after consumer prices were frozen by the Government in early 2002 when the national currency was devalued by 70%. Although its reforms were widely praised during the 1990s, the electricity market has undergone a number of interventions, ostensibly to keep consumer prices low and to avert the much-discussed energy ‘crisis’ caused by a dearth of new investment combined with rising demand levels. This paper explores how the economic crisis and its consequences have both enabled and legitimised these policy and institutional amendments, while drawing upon the specifics of the post-neoliberal market ‘re-reforms’ to consider the extent to which the Government appears to be moving away from market-based prescriptions. In addition, this paper contributes to sector-specific understandings of how, despite these changes, neoliberal ideas and assumptions continue to dominate Argentine public policy well beyond the postcrisis era.
Resumo:
This paper investigates the value of a generic storage system within two GB market mechanisms and one ancillary service provision: the wholesale power market, the Balancing Mechanism and Firm Frequency Response (FFR). Three models are evaluated under perfect foresight and fixed horizon which is subsequently extended to explore the impact of a longer foresight on market revenues. The results show that comparatively, the balancing mechanism represents the highest source of potential revenues followed by the wholesale power market and Firm Frequency Response respectively. Longer horizons show diminishing returns, with the 1 day horizon providing the vast majority of total revenues. However storage power capacity utilization benefits from such long horizons. These results could imply that short horizons are very effective in capturing revenues in both the wholesale market and balancing mechanism whereas sizing of a storage system should take into consideration horizon foresight and accuracy for greater benefit.
Resumo:
This study addresses three issues: spatial downscaling, calibration, and combination of seasonal predictions produced by different coupled ocean-atmosphere climate models. It examines the feasibility Of using a Bayesian procedure for producing combined, well-calibrated downscaled seasonal rainfall forecasts for two regions in South America and river flow forecasts for the Parana river in the south of Brazil and the Tocantins river in the north of Brazil. These forecasts are important for national electricity generation management and planning. A Bayesian procedure, referred to here as forecast assimilation, is used to combine and calibrate the rainfall predictions produced by three climate models. Forecast assimilation is able to improve the skill of 3-month lead November-December-January multi-model rainfall predictions over the two South American regions. Improvements are noted in forecast seasonal mean values and uncertainty estimates. River flow forecasts are less skilful than rainfall forecasts. This is partially because natural river flow is a derived quantity that is sensitive to hydrological as well as meteorological processes, and to human intervention in the form of reservoir management.
Resumo:
This paper uses data provided by three major real estate advisory firms to investigate the level and pattern of variation in the measurement of historic real estate rental values for the main European office centres. The paper assesses the extent to which the data providing organizations agree on historic market performance in terms of returns, risk and timing and examines the relationship between market maturity and agreement. The analysis suggests that at the aggregate level and for many markets, there is substantial agreement on direction, quantity and timing of market change. However, there is substantial variability in the level of agreement among cities. The paper also assesses whether the different data sets produce different explanatory models and market forecast. It is concluded that, although disagreement on the direction of market change is high for many market, the different data sets often produce similar explanatory models and predict similar relative performance.
Resumo:
In this paper we focus on the one year ahead prediction of the electricity peak-demand daily trajectory during the winter season in Central England and Wales. We define a Bayesian hierarchical model for predicting the winter trajectories and present results based on the past observed weather. Thanks to the flexibility of the Bayesian approach, we are able to produce the marginal posterior distributions of all the predictands of interest. This is a fundamental progress with respect to the classical methods. The results are encouraging in both skill and representation of uncertainty. Further extensions are straightforward at least in principle. The main two of those consist in conditioning the weather generator model with respect to additional information like the knowledge of the first part of the winter and/or the seasonal weather forecast. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
In this paper we focus on the one year ahead prediction of the electricity peak-demand daily trajectory during the winter season in Central England and Wales. We define a Bayesian hierarchical model for predicting the winter trajectories and present results based on the past observed weather. Thanks to the flexibility of the Bayesian approach, we are able to produce the marginal posterior distributions of all the predictands of interest. This is a fundamental progress with respect to the classical methods. The results are encouraging in both skill and representation of uncertainty. Further extensions are straightforward at least in principle. The main two of those consist in conditioning the weather generator model with respect to additional information like the knowledge of the first part of the winter and/or the seasonal weather forecast. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
This paper explores the possible evolution of UK electricity demand as we move along three potential transition pathways to a low carbon economy in 2050.The shift away from fossil fuels through the electrification of demand is discussed, particularly through the uptake of heat pumps and electric vehicles in the domestic and passenger transport sectors. Developments in the way people and institutions may use energy along each of the pathways are also considered and provide a rationale for the quantification of future annual electricity demands in various broad sectors. The paper then presents detailed modelling of hourly balancing of these demands in the context of potential low carbon generation mixes associated with the three pathways. In all cases, hourly balancing is shown to be a significant challenge. To minimise the need for conventional generation to operate with very low capacity factors, a variety of demand side participation measures are modelled and shown to provide significant benefits. Lastly, projections of greenhouse gas emissions from the UK and the imports of fossil fuels to the UK for each of the three pathways are presented.
Resumo:
We examine how the accuracy of real-time forecasts from models that include autoregressive terms can be improved by estimating the models on ‘lightly revised’ data instead of using data from the latest-available vintage. The benefits of estimating autoregressive models on lightly revised data are related to the nature of the data revision process and the underlying process for the true values. Empirically, we find improvements in root mean square forecasting error of 2–4% when forecasting output growth and inflation with univariate models, and of 8% with multivariate models. We show that multiple-vintage models, which explicitly model data revisions, require large estimation samples to deliver competitive forecasts. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Although over a hundred thermal indices can be used for assessing thermal health hazards, many ignore the human heat budget, physiology and clothing. The Universal Thermal Climate Index (UTCI) addresses these shortcomings by using an advanced thermo-physiological model. This paper assesses the potential of using the UTCI for forecasting thermal health hazards. Traditionally, such hazard forecasting has had two further limitations: it has been narrowly focused on a particular region or nation and has relied on the use of single ‘deterministic’ forecasts. Here, the UTCI is computed on a global scale,which is essential for international health-hazard warnings and disaster preparedness, and it is provided as a probabilistic forecast. It is shown that probabilistic UTCI forecasts are superior in skill to deterministic forecasts and that despite global variations, the UTCI forecast is skilful for lead times up to 10 days. The paper also demonstrates the utility of probabilistic UTCI forecasts on the example of the 2010 heat wave in Russia.