72 resultados para Finite Difference Model
Resumo:
Simulations of the global atmosphere for weather and climate forecasting require fast and accurate solutions and so operational models use high-order finite differences on regular structured grids. This precludes the use of local refinement; techniques allowing local refinement are either expensive (eg. high-order finite element techniques) or have reduced accuracy at changes in resolution (eg. unstructured finite-volume with linear differencing). We present solutions of the shallow-water equations for westerly flow over a mid-latitude mountain from a finite-volume model written using OpenFOAM. A second/third-order accurate differencing scheme is applied on arbitrarily unstructured meshes made up of various shapes and refinement patterns. The results are as accurate as equivalent resolution spectral methods. Using lower order differencing reduces accuracy at a refinement pattern which allows errors from refinement of the mountain to accumulate and reduces the global accuracy over a 15 day simulation. We have therefore introduced a scheme which fits a 2D cubic polynomial approximately on a stencil around each cell. Using this scheme means that refinement of the mountain improves the accuracy after a 15 day simulation. This is a more severe test of local mesh refinement for global simulations than has been presented but a realistic test if these techniques are to be used operationally. These efficient, high-order schemes may make it possible for local mesh refinement to be used by weather and climate forecast models.
Resumo:
An efficient finite difference scheme is presented for the inviscid terms of the three-dimensional, compressible flow equations for chemical non-equilibrium gases. This scheme represents an extension and an improvement of one proposed by the author, and includes operator splitting.
Resumo:
We present a finite difference scheme, with the TVD (total variation diminishing) property, for scalar conservation laws. The scheme applies to non-uniform meshes, allowing for variable mesh spacing, and is without upstream weighting. When applied to systems of conservation laws, no scalar decomposition is required, nor are any artificial tuning parameters, and this leads to an efficient, robust algorithm.
Resumo:
A finite difference scheme is presented for the inviscid terms of the equations of compressible fluid dynamics with general non-equilibrium chemistry and internal energy.
Resumo:
A finite difference scheme is presented for the solution of the two-dimensional equations of steady, supersonic, compressible flow of real gases. The scheme incorparates numerical characteristic decomposition, is shock-capturing by design and incorporates space-marching as a result of the assumption that the flow is wholly supersonic in at least one space dimension. Results are shown for problems involving oblique hydraulic jumps and reflection from a wall.
Resumo:
QUAGMIRE is a quasi-geostrophic numerical model for performing fast, high-resolution simulations of multi-layer rotating annulus laboratory experiments on a desktop personal computer. The model uses a hybrid finite-difference/spectral approach to numerically integrate the coupled nonlinear partial differential equations of motion in cylindrical geometry in each layer. Version 1.3 implements the special case of two fluid layers of equal resting depths. The flow is forced either by a differentially rotating lid, or by relaxation to specified streamfunction or potential vorticity fields, or both. Dissipation is achieved through Ekman layer pumping and suction at the horizontal boundaries, including the internal interface. The effects of weak interfacial tension are included, as well as the linear topographic beta-effect and the quadratic centripetal beta-effect. Stochastic forcing may optionally be activated, to represent approximately the effects of random unresolved features. A leapfrog time stepping scheme is used, with a Robert filter. Flows simulated by the model agree well with those observed in the corresponding laboratory experiments.
Resumo:
Techniques for modelling urban microclimates and urban block surfaces temperatures are desired by urban planners and architects for strategic urban designs at the early design stages. This paper introduces a simplified mathematical model for urban simulations (UMsim) including urban surfaces temperatures and microclimates. The nodal network model has been developed by integrating coupled thermal and airflow model. Direct solar radiation, diffuse radiation, reflected radiation, long-wave radiation, heat convection in air and heat transfer in the exterior walls and ground within the complex have been taken into account. The relevant equations have been solved using the finite difference method under the Matlab platform. Comparisons have been conducted between the data produced from the simulation and that from an urban experimental study carried out in a real architectural complex on the campus of Chongqing University, China in July 2005 and January 2006. The results show a satisfactory agreement between the two sets of data. The UMsim can be used to simulate the microclimates, in particular the surface temperatures of urban blocks, therefore it can be used to assess the impact of urban surfaces properties on urban microclimates. The UMsim will be able to produce robust data and images of urban environments for sustainable urban design.
Resumo:
We present a novel algorithm for joint state-parameter estimation using sequential three dimensional variational data assimilation (3D Var) and demonstrate its application in the context of morphodynamic modelling using an idealised two parameter 1D sediment transport model. The new scheme combines a static representation of the state background error covariances with a flow dependent approximation of the state-parameter cross-covariances. For the case presented here, this involves calculating a local finite difference approximation of the gradient of the model with respect to the parameters. The new method is easy to implement and computationally inexpensive to run. Experimental results are positive with the scheme able to recover the model parameters to a high level of accuracy. We expect that there is potential for successful application of this new methodology to larger, more realistic models with more complex parameterisations.
Resumo:
Details are given of the development and application of a 2D depth-integrated, conformal boundary-fitted, curvilinear model for predicting the depth-mean velocity field and the spatial concentration distribution in estuarine and coastal waters. A numerical method for conformal mesh generation, based on a boundary integral equation formulation, has been developed. By this method a general polygonal region with curved edges can be mapped onto a regular polygonal region with the same number of horizontal and vertical straight edges and a multiply connected region can be mapped onto a regular region with the same connectivity. A stretching transformation on the conformally generated mesh has also been used to provide greater detail where it is needed close to the coast, with larger mesh sizes further offshore, thereby minimizing the computing effort whilst maximizing accuracy. The curvilinear hydrodynamic and solute model has been developed based on a robust rectilinear model. The hydrodynamic equations are approximated using the ADI finite difference scheme with a staggered grid and the solute transport equation is approximated using a modified QUICK scheme. Three numerical examples have been chosen to test the curvilinear model, with an emphasis placed on complex practical applications
Resumo:
Predicting the evolution of ice sheets requires numerical models able to accurately track the migration of ice sheet continental margins or grounding lines. We introduce a physically based moving point approach for the flow of ice sheets based on the conservation of local masses. This allows the ice sheet margins to be tracked explicitly and the waiting time behaviours to be modelled efficiently. A finite difference moving point scheme is derived and applied in a simplified context (continental radially-symmetrical shallow ice approximation). The scheme, which is inexpensive, is validated by comparing the results with moving-margin exact solutions and steady states. In both cases the scheme is able to track the position of the ice sheet margin with high precision.
Resumo:
Predicting the evolution of ice sheets requires numerical models able to accurately track the migration of ice sheet continental margins or grounding lines. We introduce a physically based moving-point approach for the flow of ice sheets based on the conservation of local masses. This allows the ice sheet margins to be tracked explicitly. Our approach is also well suited to capture waiting-time behaviour efficiently. A finite-difference moving-point scheme is derived and applied in a simplified context (continental radially symmetrical shallow ice approximation). The scheme, which is inexpensive, is verified by comparing the results with steady states obtained from an analytic solution and with exact moving-margin transient solutions. In both cases the scheme is able to track the position of the ice sheet margin with high accuracy.
Resumo:
A second order accurate, characteristic-based, finite difference scheme is developed for scalar conservation laws with source terms. The scheme is an extension of well-known second order scalar schemes for homogeneous conservation laws. Such schemes have proved immensely powerful when applied to homogeneous systems of conservation laws using flux-difference splitting. Many application areas, however, involve inhomogeneous systems of conservation laws with source terms, and the scheme presented here is applied to such systems in a subsequent paper.
Resumo:
A finite difference scheme based on flux difference splitting is presented for the solution of the one-dimensional shallow-water equations in open channels, together with an extension to two-dimensional flows. A linearized problem, analogous to that of Riemann for gas dynamics, is defined and a scheme, based on numerical characteristic decomposition, is presented for obtaining approximate solutions to the linearized problem. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second-order scheme which avoids non-physical, spurious oscillations. The scheme is applied to a one-dimensional dam-break problem, and to a problem of flow in a river whose geometry induces a region of supercritical flow. The scheme is also applied to a two-dimensional dam-break problem. The numerical results are compared with the exact solution, or other numerical results, where available.
Resumo:
In this paper we are mainly concerned with the development of efficient computer models capable of accurately predicting the propagation of low-to-middle frequency sound in the sea, in axially symmetric (2D) and in fully 3D environments. The major physical features of the problem, i.e. a variable bottom topography, elastic properties of the subbottom structure, volume attenuation and other range inhomogeneities are efficiently treated. The computer models presented are based on normal mode solutions of the Helmholtz equation on the one hand, and on various types of numerical schemes for parabolic approximations of the Helmholtz equation on the other. A new coupled mode code is introduced to model sound propagation in range-dependent ocean environments with variable bottom topography, where the effects of an elastic bottom, of volume attenuation, surface and bottom roughness are taken into account. New computer models based on finite difference and finite element techniques for the numerical solution of parabolic approximations are also presented. They include an efficient modeling of the bottom influence via impedance boundary conditions, they cover wide angle propagation, elastic bottom effects, variable bottom topography and reverberation effects. All the models are validated on several benchmark problems and versus experimental data. Results thus obtained were compared with analogous results from standard codes in the literature.