70 resultados para Fig fruit fly
Resumo:
The populations of many species are structured such that mating is not random and occurs between members of local patches. When patches are founded by a single female and all matings occur between siblings, brothers may compete with each other for matings with their sisters. This local mate competition (LMC) selects for a female-biased sex ratio, especially in species where females have control over offspring sex, as in the parasitic Hymenoptera. Two factors are predicted to decrease the degree of female bias: (1) an increase in the number of foundress females in the patch and (2) an increase in the fraction of individuals mating after dispersal from the natal patch. Pollinating fig wasps are well known as classic examples of species where all matings occur in the local patch. We studied non-pollinating fig wasps, which are more diverse than the pollinating fig wasps and also provide natural experimental groups of species with different male morphologies that are linked to different mating structures. In this group of wasps, species with wingless males mate in the local patch (i.e. the fig fruit) while winged male species mate after dispersal. Species with both kinds of male have a mixture of local and non-local mating. Data from 44 species show that sex ratios (defined as the proportion of males) are in accordance with theoretical predictions: wingless male species < wing-dimorphic male species < winged male species. These results are also supported by a formal comparative analysis that controls for phylogeny. The foundress number is difficult to estimate directly for non-pollinating fig wasps but a robust indirect method leads to the prediction that foundress number, and hence sex ratio, should increase with the proportion of patches occupied in a crop. This result is supported strongly across 19 species with wingless males, but not across 8 species with winged males. The mean sex ratios for species with winged males are not significantly different from 0.5, and the absence of the correlation observed across species with wingless males may reflect weak selection to adjust the sex ratio in species whose population mating structure tends not to be subdivided. The same relationship is also predicted to occur within species if individual females adjust their sex ratios facultatively. This final prediction was not supported by data from a wingless male species, a male wing-dimorphic species or a winged male species.
Resumo:
Tomato plants (Lycopersicon esculentum Mill. var. DRK) were grown with a split root system to determine the effect of an unequal distribution of salinity in the root zone on yield and quality. The roots of the plant were divided into two portions and each portion was irrigated with nutrient solutions differing in EC levels achieved by adding Na or K. The maximum yield was observed in treatments with unequal EC when one portion of the roots received only water and the lowest in the high EC treatments. The reduced yield in the high EC treatment was due to the incidence of blossom-end rot and reduced fruit size. Fruit size in the treatments receiving solutions of unequal EC was up to 12% greater than that in the control. No significant differences were found in soluble solids and acidity between control and all other unequal EC treatments. Ca concentration was significantly higher in the treatments where one portion of the root system received water. It was concluded that high salinity had positive effects on yield and quality provided that one portion of the root system were placed in low EC or only water.
Resumo:
There are over 700 species of fig trees in the tropics and several thousand species of fig wasps are associated with their syconia (inflorescences). These wasps comprise a monophyletic family of fig pollinators and several diverse lineages of non-pollinating wasps. The pollinator larvae gall fig flowers, while larvae of non-pollinating species either initiate their own galls or parasitise the galls of other wasps. A single fig species has 1-4 pollinator species and also hosts up to 30 non-pollinating wasp species. Most wasps show a high degree of host plant specificity and are known from only a single fig species. However, in some cases wasps may be shared across closely related fig species. There is impressive morphological coevolution between figs and fig wasps and this, combined with a high degree of partner specificity, led to the expectation that figs and pollinators have cospeciated extensively. Comparison of deep phylogenies supports long-term codivergence of figs and pollinators, but also suggests that some host shifts have occurred. Phylogenies of more closely related species do not match perfectly and may even be incongruent, suggesting significant roles for processes other than strict cospeciation. Combined with recent evidence on host specificity patterns, this suggests that pollinator wasps may often speciate by host shifts between closely related figs, or by duplication (the wasp speciates but the fig doesn't). The frequencies and biological details of these different modes of speciation invite further study. Far less is known about speciation in non-pollinating fig wasps. Some lineages have probably coevolved with figs and pollinators for most of the evolutionary history of the symbiosis, while others appear to be more recent colonisers. Many species appear to be highly host plant specific, but those that lay eggs through the fig wall without entering the syconium (the majority of species) may be subject to fewer constraints on host-shifting than pollinators. There is evidence for substantial host shifting in at least one gens, but also evidence for ecological speciation on the same host plant by niche shifts in other cases. Finally, recent work has begun to address the issue of “community phylogeny” and provided evidence for long-term co-divergence of multiple pollinating and non-pollinating wasp lineages with their host figs.
Determinants of fruit and vegetable intake in England: a re-examination based on quantile regression
Resumo:
Objective To examine die sociodemographic determinants of fruit and vegetable (F&V) consumption in England and determine the differential effects of socioeconomic variables at various parts of the intake distribution, with a special focus on severely inadequate intakes Design Quantile regression, expressing F&V intake as a function of sociodemographic variables, is employed. Here, quantile regression flexibly allows variables such as ethnicity to exert effects on F&V intake that. vary depending oil existing levels of intake. Setting The 2003 Health survey of England. Subjects Data were from 11044 adult individuals. Results The influence of particular sociodemographic variables is found to vary significantly across the intake distribution We conclude that women consume more F&V than men, Asians and Hacks mole dian Whites, co-habiting individuals more than single-living ones Increased incomes and education also boost intake However, the key general finding of the present study is that the influence of most variables is relatively weak in the area of greatest concern, i e among those with the most inadequate intakes in any reference group. Conclusions. Our findings emphasise the importance of allowing the effects of socio-economic drivers to vary across the intake distribution The main finding, that variables which exert significant influence on F&V Intake at other parts Of the conditional distribution have a relatively weak influence at the lower tail, is cause for concern. It implies that in any defined group, those consuming the lease F&V are hard to influence using compaigns or policy levers.
Resumo:
We isolated 18 microsatellites from Sycoscapter australis, a nonpollinating fig wasp that develops in figs of Ficus macrophylla, and assessed their variability in 20 wasps. We further optimized nine of these loci for use in three other Sycoscapter species that develop in Ficus rubiginosa figs and assessed their variability in 47-140 wasps per species. These are the first microsatellites developed for nonpollinating fig wasps and show sufficient polymorphism to become important tools in evolutionary and genetical studies of Sycoscapter wasps.
Resumo:
Figs and fig-pollinating wasps are obligate mutualists that have coevolved for over 60 million years. But when and where did pollinating fig wasps (Agaonidae) originate? Some studies suggest that agaonids arose in the Late Cretaceous and the current distribution of fig-wasp faunas can be explained by the break-up of the Gondwanan landmass. However, recent molecular-dating studies suggest divergence time estimates that are inconsistent with the Gondwanan vicariance hypothesis and imply that long distance oceanic dispersal could have been an important process for explaining the current distribution of both figs and fig wasps. Here, we use a combination of phylogenetic and biogeographical data to infer the age, the major period of diversification, and the geographic origin of pollinating fig wasps. Age estimates ranged widely depending on the molecular-dating method used and even when using the same method but with slightly different constraints, making it difficult to assess with certainty a Gondwanan origin of agaonids. The reconstruction of ancestral areas suggests that the most recent common ancestor of all extant fig-pollinating wasps was most likely Asian, although a southern Gondwana origin cannot be rejected. Our analysis also suggests that dispersal has played a more important role in the development of the fig-wasp biota than previously assumed. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Despite theoretical predictions, dishonest signalling has rarely been observed in aggressive interactions. We present evidence of such signalling in the nonpollinating. g wasp Philotrypesis sp. A ex Ficus rubiginosa. First, morphometric data indicated that an alternative 'atypical' male morph (17.8% of individuals) exists that tends to be larger in body size and has longer mandibles for a given body size than other 'typical' males. Second, behavioural observations suggested that males use mandible gape width (which depends on mandible length) as a cue to assess opponents before fights and retreat without escalating if they are unlikely to win, and, probably because their greater mandible gape width causes more opponents to retreat without escalating, that atypical males engaged in fewer fights than typical males for a given body size but had higher mating success. Third, atypical males were less likely to win fights than typical males of similar mandible length relative to opponents. In addition, we found that atypical males incur more injuries (greater receiver-dependent signal costs) than typical males of similar body size relative to rivals. We discuss the implications of our findings for future work on dishonest signalling. (C) 2009 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fig trees are pollinated by fig wasps, which also oviposit in female flowers. The wasp larvae gall and eat developing seeds. Although fig trees benefit from allowing wasps to oviposit, because the wasp offspring disperse pollen, figs must prevent wasps from ovipositing in all flowers, or seed production would cease, and the mutualism would go extinct. In Ficus racemosa, we find that syconia (‘figs’) that have few foundresses (ovipositing wasps) are underexploited in the summer (few seeds, few galls, many empty ovules) and are overexploited in the winter (few seeds, many galls, few empty ovules). Conversely, syconia with many foundresses produce intermediate numbers of galls and seeds, regardless of season. We use experiments to explain these patterns, and thus, to explain how this mutualism is maintained. In the hot summer, wasps suffer short lifespans and therefore fail to oviposit in many flowers. In contrast, cooler temperatures in the winter permit longer wasp lifespans, which in turn allows most flowers to be exploited by the wasps. However, even in winter, only in syconia that happen to have few foundresses are most flowers turned into galls. In syconia with higher numbers of foundresses, interference competition reduces foundress lifespans, which reduces the proportion of flowers that are galled. We further show that syconia encourage the entry of multiple foundresses by delaying ostiole closure. Taken together, these factors allow fig trees to reduce galling in the wasp-benign winter and boost galling (and pollination) in the wasp-stressing summer. Interference competition has been shown to reduce virulence in pathogenic bacteria. Our results show that interference also maintains cooperation in a classic, cooperative symbiosis, thus linking theories of virulence and mutualism. More generally, our results reveal how frequency-dependent population regulation can occur in the fig-wasp mutualism, and how a host species can ‘set the rules of the game’ to ensure mutualistic behavior in its symbionts.
Resumo:
The effects of temperature and light integral on fruit growth and development of five cacao genotypes (Amelonado, AMAZ 15/15, SCA 6, SPEC 54/1 and UF 676) were studied in semi-controlled environment glasshouses in which the thermal regimes of cacao-growing regions of Brazil, Ghana and Malaysia were simulated. Fruit losses because of physiological will (cherelle will) were greater at higher temperatures and also differed significantly between genotypes, reflecting genetic differences in competition for assimilates between vegetative and reproductive components. Short-term measurements of fruit growth indicated faster growth rates at higher temperatures. In addition, a significant negative linear relationship between temperature and development time was observed. There was an effect of genotype on this relationship, such that time to fruit maturation at a given temperature was greatest for the clone UF 676 and least for AMAZ 15/15. Analysis of base temperatures, derived from these relationships indicated genetic variability in sensitivity of cacao fruit growth to temperature (base temperatures ranged from 7.5 degrees C for Amelonado and AMAZ 15/15 to 12.9 for SPEC 54/1). Final fruit size was a positive function of beam number for all genotypes and a positive function of light integral for Amelonado in the Malaysia simulated environment (where the temperature was almost constant). In simulated environments where temperature was the main variable (Brazil and Ghana) increases in temperature resulted in a significant decrease in final pod size for one genotype (Amelonado) in Brazil and for two genotypes (SPEC 54/1 and UF 676) in Ghana. It was hypothesised that pod growth duration (mediated by temperature), assimilation and beam number are all determinants of final pod size but that under specific conditions one of these factors may override the others. There was variability between genotypes in the response of beam size and beam lipid content to temperature. Negative relationships between temperature and bean size were found for Amelonado and UF 676. Lipid concentration was a curvilinear function of temperature for Amelonado and UF 676, with optimal temperatures of 23 degrees C and 24 degrees C, respectively. The variability observed here of different cacao genotypes to temperature highlights the need and opportunities for appropriate matching of planting material with local environments.
Resumo:
1. Fig trees (Ficus) are pollinated only by agaonid wasps, whose larvae also gall fig ovules. Each ovule develops into either a seed (when pollinated) or a wasp (when an egg is also laid inside) but not both. 2. Ovipositing wasps (foundresses) favour ovules near the centre of the enclosed inflorescence (syconium or 'fig'), leaving ovules near the outer wall to develop into seeds. This spatial stratification of wasps and seeds ensures reproduction in both partners, and thereby enables mutualism persistence. However, the mechanism(s) responsible remain(s) unknown. 3. Theory shows that foundresses will search for increasingly rare inner ovules and ignore outer ovules, as long as ovipositing in outer ovules is sufficiently slow and/or if inner ovules confer greater fitness to wasps. The fig-pollinator mutualism can therefore be stabilized by strong time constraints on foundresses and by offspring fitness gradients over variation in ovule position. 4. Female fig wasps cannot leave their galls without male assistance. We found that females in outer ovules were unlikely to be released. Inner ovules thus have added value to foundresses, because their female offspring are more likely to mate and disperse. 5. For those offspring that did emerge, gall position (inner/outer) and body size did not influence the order in which female pollinators exited syconia, nor did early emerging wasps enjoy increased life spans. 6. We also found that the life spans of female wasps nearly doubled when given access to moisture. We suggest that conflict resolution in the fig-pollinator mutualism may thus be influenced by tropical seasonality, because wasps may be less able to over-exploit ovules in dry periods due to time constraints.
Resumo:
Mutualisms are interspecific interactions in which both players benefit. Explaining their maintenance is problematic, because cheaters should outcompete cooperative conspecifics, leading to mutualism instability. Monoecious figs (Ficus) are pollinated by host-specific wasps (Agaonidae), whose larvae gall ovules in their "fruits'' (syconia). Female pollinating wasps oviposit directly into Ficus ovules from inside the receptive syconium. Across Ficus species, there is a widely documented segregation of pollinator galls in inner ovules and seeds in outer ovules. This pattern suggests that wasps avoid, or are prevented from ovipositing into, outer ovules, and this results in mutualism stability. However, the mechanisms preventing wasps from exploiting outer ovules remain unknown. We report that in Ficus rubiginosa, offspring in outer ovules are vulnerable to attack by parasitic wasps that oviposit from outside the syconium. Parasitism risk decreases towards the centre of the syconium, where inner ovules provide enemy-free space for pollinator offspring. We suggest that the resulting gradient in offspring viability is likely to contribute to selection on pollinators to avoid outer ovules, and by forcing wasps to focus on a subset of ovules, reduces their galling rates. This previously unidentified mechanism may therefore contribute to mutualism persistence independent of additional factors that invoke plant defences against pollinator oviposition, or physiological constraints on pollinators that prevent oviposition in all available ovules.
Resumo:
In this preliminary study, the reproductive phenology of two monoecious fig species, Ficus racemosa and F. rubiginosa, was examined in tropical Australia. Syconia (inflorescences) occurred on both species all year round, but pre-floral and interfloral syconia were much commoner than the wasp-receptive and wasp-emitting phases in both species. The temporal overlap of the wasp-receptive and wasp-emitting phases on a single tree indicated that self-pollination was possible in both species and that pollinators may sometimes persist through multiple generations on one tree. This sexual phase overlap was commoner in F. rubiginosa than in F racemosa. The two species also differed in their general within-tree asynchrony, with a higher diversity of phases on F. rubiginosa than on F. racemosa. The time from syconium initiation to ripening was very similar in F. rubiginosa (mean = 48.51 days) and F. racemosa (mean = 43.53 days). However, there was much more variation within and between trees for F. rubiginosa. In addition, the wasp-receptive phase was found to last up to 5 days (rnean = 4.38) in F. rubiginosa. Such longevity should contribute substantially to local pollinator population persistence. Future work should use genetic studies to determine whether self-pollination is common in these fig species.
Resumo:
Although theory exists concerning the types of strategies that should be used in contests over resources, empirical work explicitly testing its predictions is relatively rare. We investigated male fighting strategies in two nonpollinating. g wasp species associated with Ficus rubiginosa figs. In Sycoscapter sp. A, males did not assess each other before or during fights over mating opportunities. Instead,fights continued until the loser reached an energetic cost threshold that was positively correlated with its body size (fighting ability) and retreated. In Philotrypesis sp. B, pre fight assessment was indicated, with males attacking competitively inferior rivals to remove them from the competitor pool ( they then continued to do so until they reached a cost threshold that was again positively correlated with body size). Using data on species ecology, we discuss our findings with respect to theory on when different fighting strategies should evolve. We argue that the type of strategy used by a. g wasp species is determined by its relative benefits in terms of inclusive fitness. (c) 2008 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Mariner transposable elements are widespread and diverse in insects. We screened 10 species of fig wasps (Hymenoptera: Agaonidae) for mariner elements. All 10 species harbour a large diversity of mariner elements, most of which have interrupted reading frames in the transposase gene region, suggesting that they are inactive and ancient. We sequenced two full-length mariner elements and found evidence to suggest that they are inserted in the genome at a conserved region shared by other hymenopteran taxa. The association between mariner elements and fig wasps is old and dominated by vertical transmission, suggesting that these 'selfish genetic elements' have evolved to impart only very low costs to their hosts.