52 resultados para FLICKER NOISE
Resumo:
For Wiener spaces conditional expectations and $L^{2}$-martingales w.r.t. the natural filtration have a natural representation in terms of chaos expansion. In this note an extension to larger classes of processes is discussed. In particular, it is pointed out that orthogonality of the chaos expansion is not required.
Resumo:
Sudden stratospheric warmings (SSWs) are usually considered to be initiated by planetary wave activity. Here it is asked whether small-scale variability (e.g., related to gravity waves) can lead to SSWs given a certain amount of planetary wave activity that is by itself not sufficient to cause a SSW. A highly vertically truncated version of the Holton–Mass model of stratospheric wave–mean flow interaction, recently proposed by Ruzmaikin et al., is extended to include stochastic forcing. In the deterministic setting, this low-order model exhibits multiple stable equilibria corresponding to the undisturbed vortex and SSW state, respectively. Momentum forcing due to quasi-random gravity wave activity is introduced as an additive noise term in the zonal momentum equation. Two distinct approaches are pursued to study the stochastic system. First, the system, initialized at the undisturbed state, is numerically integrated many times to derive statistics of first passage times of the system undergoing a transition to the SSW state. Second, the Fokker–Planck equation corresponding to the stochastic system is solved numerically to derive the stationary probability density function of the system. Both approaches show that even small to moderate strengths of the stochastic gravity wave forcing can be sufficient to cause a SSW for cases for which the deterministic system would not have predicted a SSW.
Resumo:
The frequency of persistent atmospheric blocking events in the 40-yr ECMWF Re-Analysis (ERA-40) is compared with the blocking frequency produced by a simple first-order Markov model designed to predict the time evolution of a blocking index [defined by the meridional contrast of potential temperature on the 2-PVU surface (1 PVU ≡ 1 × 10−6 K m2 kg−1 s−1)]. With the observed spatial coherence built into the model, it is able to reproduce the main regions of blocking occurrence and the frequencies of sector blocking very well. This underlines the importance of the climatological background flow in determining the locations of high blocking occurrence as being the regions where the mean midlatitude meridional potential vorticity (PV) gradient is weak. However, when only persistent blocking episodes are considered, the model is unable to simulate the observed frequencies. It is proposed that this persistence beyond that given by a red noise model is due to the self-sustaining nature of the blocking phenomenon.
Resumo:
The authors examined whether background noise can be habituated to in the laboratory by using memory for prose tasks in 3 experiments. Experiment 1 showed that background speech can be habituated to after 20 min exposure and that meaning and repetition had no effect on the degree of habituation seen. Experiment 2 showed that office noise without speech can also be habituated to. Finally, Experiment 3 showed that a 5-min period of quiet, but not a change in voice, was sufficient to partially restore the disruptive effects of the background noise previously habituated to. These results are interpreted in light of current theories regarding the effects of background noise and habituation; practical implications for office planning are discussed.
Resumo:
Background noise should in theory hinder detection of auditory cues associated with approaching danger. We tested whether foraging chaffinches Fringilla coelebs responded to background noise by increasing vigilance, and examined whether this was explained by predation risk compensation or by a novel stimulus hypothesis. The former predicts that only inter-scan interval should be modified in the presence of background noise, not vigilance levels generally. This is because noise hampers auditory cue detection and increases perceived predation risk primarily when in the head-down position, and also because previous tests have shown that only interscan interval is correlated with predator detection ability in this system. Chaffinches only modified interscan interval supporting this hypothesis. At the same time they made significantly fewer pecks when feeding during the background noise treatment and so the increased vigilance led to a reduction in intake rate, suggesting that compensating for the increased predation risk could indirectly lead to a fitness cost. Finally, the novel stimulus hypothesis predicts that chaffinches should habituate to the noise, which did not occur within a trial or over 5 subsequent trials. We conclude that auditory cues may be an important component of the trade-off between vigilance and feeding, and discuss possible implications for anti-predation theory and ecological processes
Resumo:
Background: Inadvertent drilling on the ossicular chain is one of the causes of sensorineural hearing loss (HL) that may follow tympanomastoid surgery. A high-frequency HL is most frequently observed. It is speculated that the HL is a result of vibration of the ossicular chain resembling acoustic noise trauma. It is generally considered that using a large cutting burr is more likely to cause damage than a small diamond burr. Aim: The aim was to investigate the equivalent noise level and its frequency characteristics generated by drilling onto the short process of the incus in fresh human temporal bones. Methods and Materials: Five fresh cadaveric temporal bones were used. Stapes displacement was measured using laser Doppler vibrometry during short drilling episodes. Diamond. and cutting burrs of different diameters were used. The effect of the drilling on stapes footplate displacement was compared with that generated by an acoustic signal. The equivalent noise level (dB sound pressure level equivalent [SPL eq]) was thus calculated. Results: The equivalent noise levels generated ranged from 93 to 125 dB SPL eq. For a 1-mm cutting burr, the highest equivalent noise level was 108 dB SPL eq, whereas a 2.3-mm cutting burr produced a maximal level of 125 dB SPL eq. Diamond burrs generated less noise than their cutting counterparts, with a 2.3-mm diamond burr producing a highest equivalent noise level of 102, dB SPL eq. The energy of the noise increased at the higher end of the frequency spectrum, with a 2.3-mm cutting burr producing a noise level of 105 dB SPL eq at 1 kHz and 125 dB SPL eq at 8 kHz. In contrast, the same sized diamond burr produced 96 dB SPL eq at 1 kHz and 99 dB at 8 kHz. Conclusion:This study suggests that drilling on the ossicular chain can produce vibratory force that is analogous with noise levels known to produce acoustic trauma. For the same type of burr, the larger the diameter, the greater the vibratory force, and for the same size of burr, the cutting burr creates more vibratory force than the diamond burr. The cutting burr produces greater high-frequency than lower-frequency vibratory energy.
Resumo:
Perceptual effects of room reverberation on a "sir" or "stir" test-word can be observed when the level of reverberation in the word is increased, while the reverberation in a surrounding 'context I utterance remains at a minimal level. The result is that listeners make more "sit" identifications. When the context's reverberation is also increased, to approach the level in the test word, extrinsic perceptual compensation is observed, so that the number of listeners' "sir" identifications reduces to a value similar to that found with minimal reverberation. Thus far, compensation effects have only been observed with speech or speech-like contexts in which the short-term spectrum changes as the speaker's articulators move. The results reported here show that some noise contexts with static short-term spectra can also give rise to compensation. From these experiments it would appear that compensation requires a context with a temporal envelope that fluctuates to some extent, so that parts of it resemble offsets. These findings are consistent with a rather general kind of perceptual compensation mechanism; one that is informed by the 'tails' that reverberation adds at offsets. Other results reported here show that narrow-band contexts do not bring about compensation, even when their temporal-envelopes are the same as those of the more effective wideband contexts. These results suggest that compensation is confined to the frequency range occupied by the context, and that in a wideband sound it might operate in a 'band by band' manner.
Resumo:
The 'irrelevant sound effect' in short-term memory is commonly believed to entail a number of direct consequences for cognitive performance in the office and other workplaces (e.g. S. P. Banbury, S. Tremblay, W. J. Macken, & D. M. Jones, 2001). It may also help to identify what types of sound are most suitable as auditory warning signals. However, the conclusions drawn are based primarily upon evidence from a single task (serial recall) and a single population (young adults). This evidence is reconsidered from the standpoint of different worker populations confronted with common workplace tasks and auditory environments. Recommendations are put forward for factors to be considered when assessing the impact of auditory distraction in the workplace. Copyright (c) 2005 John Wiley & Sons, Ltd.
Office noise and employee concentration: identifying causes of disruption and potential improvements
Resumo:
A field study assessed subjective reports of distraction from various office sounds among 88 employees at two sites. In addition, the study examined the amount of exposure the workers had to the noise in order to determine any evidence for habituation. Finally, respondents were asked how they would improve their environment ( with respect to noise), and to rate examples of improvements with regards to their job satisfaction and performance. Out of the sample, 99% reported that their concentration was impaired by various components of office noise, especially telephones left ringing at vacant desks and people talking in the background. No evidence for habituation to these sounds was found. These results are interpreted in the light of previous research regarding the effects of noise in offices and the 'irrelevant sound effect'.
Resumo:
This paper proposes a new iterative algorithm for OFDM joint data detection and phase noise (PHN) cancellation based on minimum mean square prediction error. We particularly highlight the problem of "overfitting" such that the iterative approach may converge to a trivial solution. Although it is essential for this joint approach, the overfitting problem was relatively less studied in existing algorithms. In this paper, specifically, we apply a hard decision procedure at every iterative step to overcome the overfitting. Moreover, compared with existing algorithms, a more accurate Pade approximation is used to represent the phase noise, and finally a more robust and compact fast process based on Givens rotation is proposed to reduce the complexity to a practical level. Numerical simulations are also given to verify the proposed algorithm.
Resumo:
The two major applications of microwave remote sensors are radiometer and radar. Because of its importance and the nature of the application, much research has been made on the various aspects of the radar. This paper will focus on the various aspects of the radiometer from a design point of view and the Low Noise Amplifier will be designed and implemented. The paper is based on a study in radio Frequency Communications engineering and understanding of electronic and RF circuits. Some research study about the radiometer and practical implementation of Low Noise Amplifier for Radiometer will be the main focus of this paper. Basically the paper is divided into two parts. In the first part some background study about the radiometer will be carried out and commonly used types of radiometer will be discussed. In the second part LNA for the radiometer will be designed.
OFDM joint data detection and phase noise cancellation based on minimum mean square prediction error
Resumo:
This paper proposes a new iterative algorithm for orthogonal frequency division multiplexing (OFDM) joint data detection and phase noise (PHN) cancellation based on minimum mean square prediction error. We particularly highlight the relatively less studied problem of "overfitting" such that the iterative approach may converge to a trivial solution. Specifically, we apply a hard-decision procedure at every iterative step to overcome the overfitting. Moreover, compared with existing algorithms, a more accurate Pade approximation is used to represent the PHN, and finally a more robust and compact fast process based on Givens rotation is proposed to reduce the complexity to a practical level. Numerical Simulations are also given to verify the proposed algorithm. (C) 2008 Elsevier B.V. All rights reserved.