102 resultados para Experiment container, ISS, FSL, FEM


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary objective of this research was to determine how the presence of more than one plant and more than one species in a container influence plant quality, particularly when the volume of water given to the container is reduced. Petunia xhybrida 'Hurrah White' and Impatiens 'Cajun Violet' were chosen as typical bedding plant species. Plants were grown in 2 1 containers either under "100% ETp" (i.e., replacing all the water lost by evapotranspiration in the previous 24 h) or under a moisture-restrictive regime of "25% ETp," in which plants received 25% of the "100% ETp" value. An ancillary experiment investigated whether low watering resulted in floral buds being aborted. Results demonstrated that watering requirements of Petunia under "100% ETp" (i.e., replacing all the water lost by evapotranspiration in the previous 24 h) were on average 30% greater than those of Impatiens. However, when two Petunia plants were growing in the same container, the volume of water required to maintain soil moisture content at container capacity was on average only 10% greater than for a single plant. Under a "25% ETp" regime in which plants received 25% of the "100% ETp" value, flower number, plant height, and flower size were reduced by 50%,33%, and 13%,respectively,in Petunia compared with "100% ETp." For example, flower numbers decreased from an average of 71 to 33 flowers per plant in "100% ETp" and "25% ETp," respectively. Petunia plants in the "25% ETp" regime, however, were more efficient at producing both biomass and flowers in relation to the volume of water applied. Petunia plants that experienced both competition from other plants in the container and lower irrigation rates had enhanced efficiency of flower production (i.e., more flowers per unit biomass). For Impatiens, however, the growing of single plants at "25% ETp" was plausible, but the addition of a Petunia plant at "25% ETp" was detrimental to plant quality (Impatiens flower numbers reduced by 75%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ITCT-Lagrangian-2K4 (Intercontinental Transport and Chemical Transformation) experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end, attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts from two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique then identifies Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these "coincident matches'' is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown, and the downwind minus upwind differences in tracers are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The long-term stability, high accuracy, all-weather capability, high vertical resolution, and global coverage of Global Navigation Satellite System (GNSS) radio occultation (RO) suggests it as a promising tool for global monitoring of atmospheric temperature change. With the aim to investigate and quantify how well a GNSS RO observing system is able to detect climate trends, we are currently performing an (climate) observing system simulation experiment over the 25-year period 2001 to 2025, which involves quasi-realistic modeling of the neutral atmosphere and the ionosphere. We carried out two climate simulations with the general circulation model MAECHAM5 (Middle Atmosphere European Centre/Hamburg Model Version 5) of the MPI-M Hamburg, covering the period 2001–2025: One control run with natural variability only and one run also including anthropogenic forcings due to greenhouse gases, sulfate aerosols, and tropospheric ozone. On the basis of this, we perform quasi-realistic simulations of RO observables for a small GNSS receiver constellation (six satellites), state-of-the-art data processing for atmospheric profiles retrieval, and a statistical analysis of temperature trends in both the “observed” climatology and the “true” climatology. Here we describe the setup of the experiment and results from a test bed study conducted to obtain a basic set of realistic estimates of observational errors (instrument- and retrieval processing-related errors) and sampling errors (due to spatial-temporal undersampling). The test bed results, obtained for a typical summer season and compared to the climatic 2001–2025 trends from the MAECHAM5 simulation including anthropogenic forcing, were found encouraging for performing the full 25-year experiment. They indicated that observational and sampling errors (both contributing about 0.2 K) are consistent with recent estimates of these errors from real RO data and that they should be sufficiently small for monitoring expected temperature trends in the global atmosphere over the next 10 to 20 years in most regions of the upper troposphere and lower stratosphere (UTLS). Inspection of the MAECHAM5 trends in different RO-accessible atmospheric parameters (microwave refractivity and pressure/geopotential height in addition to temperature) indicates complementary climate change sensitivity in different regions of the UTLS so that optimized climate monitoring shall combine information from all climatic key variables retrievable from GNSS RO data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

North African dust is important for climate through its direct radiative effect on solar and terrestrial radiation and its role in the biogeochemical system. The Dust Outflow and Deposition to the Ocean project (DODO) aimed to characterize the physical and optical properties of airborne North African dust in two seasons and to use these observations to constrain model simulations, with the ultimate aim of being able to quantify the deposition of iron to the North Atlantic Ocean. The in situ properties of dust from airborne campaigns measured during February and August 2006, based at Dakar, Senegal, are presented here. Average values of the single scattering albedo (0.99, 0.98), mass specific extinction (0.85 m^2 g^-1 , 1.14 m^2 g^-1 ), asymmetry parameter (0.68, 0.68), and refractive index (1.53--0.0005i,1.53--0.0014i) for the accumulation mode were found to differ by varying degrees between the dry and wet season, respectively. It is hypothesized that these differences are due to different source regions and transport processes which also differ between the DODO campaigns. Elemental ratios of Ca/Al were found to differ between the dry and wet season (1.1 and 0.5, respectively). Differences in vertical profiles are found between seasons and between land and ocean locations and reflect the different dynamics of the seasons. Using measurements of the coarse mode size distribution and illustrative Mie calculations, the optical properties are found to be very sensitive to the presence and amount of coarse mode of mineral dust, and the importance of accurate measurements of the coarse mode of dust is highlighted.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of targeted sonde observations on the 1-3 day forecasts for northern Europe is evaluated using the Met Office four-dimensional variational data assimilation scheme and a 24 km gridlength limited-area version of the Unified Model (MetUM). The targeted observations were carried out during February and March 2007 as part of the Greenland Flow Distortion Experiment, using a research aircraft based in Iceland. Sensitive area predictions using either total energy singular vectors or an ensemble transform Kalman filter were used to predict where additional observations should be made to reduce errors in the initial conditions of forecasts for northern Europe. Targeted sonde data was assimilated operationally into the MetUM. Hindcasts show that the impact of the sondes was mixed. Only two out of the five cases showed clear forecast improvement; the maximum forecast improvement seen over the verifying region was approximately 5% of the forecast error 24 hours into the forecast. These two cases are presented in more detail: in the first the improvement propagates into the verification region with a developing polar low; and in the second the improvement is associated with an upper-level trough. The impact of cycling targeted data in the background of the forecast (including the memory of previous targeted observations) is investigated. This is shown to cause a greater forecast impact, but does not necessarily lead to a greater forecast improvement. Finally, the robustness of the results is assessed using a small ensemble of forecasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Covered Catchment Experiment at Gordsjon is a large scale forest ecosystem manipulation, where acid precipitation was intercepted by a 7000 m(2) plastic roof and replaced by 'clean precipitation' sprinkled below the roof for ten years between 1991 and 2001. The treatment resulted in a strong positive response of runoff quality. The runoff sulphate, inorganic aluminium and base cations decreased, while there was a strong increase in runoff ANC and a moderate increase in pH. The runoff continued to improve over the whole duration of the experiment. The achieved quality was, however, after ten years still considerably worse than estimated pre-industrial runoff at the site. Stable isotopes of sulphur were analysed to study the soil sulphur cycling. At the initial years of the experiment, the desorption of SO4 from the mineral soil appeared to control the runoff SO4 concentration. However, as the experiment proceeded, there was growing evidence that net mineralisation of soil organic sulphur in the humus layer was an additional source of SO4 in runoff. This might provide a challenge to current acidification models. The experiment convincingly demonstrated on a catchment scale, that reduction in acid deposition causes an immediate improvement of surface water quality even at heavily acidified sites. The improvement of the runoff appeared to be largely a result of cation exchange processes in the soil due to decreasing concentrations of the soil solution, while any potential change in soil base saturation seemed to be less important for the runoff chemistry over the short time period of one decade. These findings should be considered when interpreting and extrapolating regional trends in surface water chemistry to the terrestrial parts of ecosystems.