27 resultados para Exercise and metabolism
Resumo:
The focus of the present review is to assimilate current knowledge concerning the differing signalling transduction cascades that control muscle mass development and affect skeletal muscle phenotype following exercise or nutritional uptake. Effects of mechanical loading on protein synthesis are discussed. Muscle growth control is regulated by the interplay of growth promoting and growth suppressing factors, which act in concert. Much emphasis has been placed on understanding how increases in the rate of protein synthesis are induced in skeletal muscle during the adaptive process. One key point to emerge is that protein synthesis following resistance exercise or increased nutrient availability is mediated through changes in signal transduction involving the phosphorylation of mTOR and sequential activation of downstream targets. On the other hand, AMPK activation plays an important role in the inhibition of protein synthesis by suppressing the function of multiple translation regulators of the mTOR signalling pathway in response to cellular energy depletion and low metabolic conditions. The effects of exercise and/or nutritional uptake on the activation of signalling molecules that regulate protein synthesis are highlighted, providing a better understanding of the molecular changes in the cell.
Resumo:
Flavonoids have been proposed to act as beneficial agents in a multitude of disease states, including cancer, cardiovascular disease, and neurodegenerative disorders. The biological effect of these polyphenols and their in vivo circulating metabolites will ultimately depend on the extent to which they associate with cells, either by interactions at the membrane or more importantly their uptake. This review summarises the current knowledge on the cellular uptake of flavonoids and their metabolites with particular relevance to further intracellular metabolism and the generation of potential new bioactive forms. Uptake and metabolism of the circulating forms of flavanols, flavonols, and flavanones into cells of the skin, the brain, and cancer cells is reviewed and potential biological relevance to intracellular formed metabolites is discussed.
Resumo:
Purpose Green tea is thought to possess many beneficial effects on human health. However, the extent of green tea polyphenol biotransformation may affect its proposed therapeutic effects. Catechol-O-methyltransferase (COMT), the enzyme responsible for polyphenolic methylation, has a common polymorphism in the genetic code at position 158 reported to result in a 40% reduction in enzyme activity in in vitro studies. The current preliminary study was designed to investigate the impact of COMT genotype on green tea catechin absorption and metabolism in humans. Methods Twenty participants (10 of each homozygous COMT genotype) were recruited, and plasma concentration profiles were produced for epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), epicatechin (EC) and 4′-O-methyl EGCG after 1.1 g of Sunphenon decaffeinated green tea extract (836 mg green tea catechins), with a meal given after 60 min. Results For the entire group, EGCG, EGC, EC, ECG and 4′-O-methyl EGCG reached maximum concentrations of 1.09, 0.41, 0.33, 0.16 and 0.08 μM at 81.5, 98.5, 99.0, 85.5 and 96.5 min, respectively. Bimodal curves were observed for the non-gallated green tea catechins EGC and EC as opposed to single-peaked curves for the gallated green tea catechins EGCG and ECG. No significant parametric differences between COMT genotype groups were found. Conclusions In conclusion, the COMT Val(158/108)Met does not appear to have a dramatic influence on EGCG absorption and elimination. However, further pharmacokinetic research is needed to substantiate these findings.
Resumo:
The secoiridoids 3,4-dihydroxyphenylethanol-elenolic acid (3,4-DHPEA-EA) and 3,4-dihydroxyphenylethanol-elenolic acid dialdehyde (3,4-DHPEA-EDA) account for approximately 55 % of the phenolic content of olive oil and may be partly responsible for its reported human health benefits. We have investigated the absorption and metabolism of these secoiridoids in the upper gastrointestinal tract. Both 3,4-DHPEA-EDA and 3,4-DHPEA-EA were relatively stable under gastric conditions, only undergoing limited hydrolysis. Both secoiridoids were transferred across a human cellular model of the small intestine (Caco-2 cells). However, no glucuronide conjugation was observed for either secoiridoid during transfer, although some hydroxytyrosol and homovanillic alcohol were formed. As Caco-2 cells are known to express only limited metabolic activity, we also investigated the absorption and metabolism of secoiridoids in isolated, perfused segments of the jejunum and ileum. Here, both secoiridoids underwent extensive metabolism, most notably a two-electron reduction and glucuronidation during the transfer across both the ileum and jejunum. Unlike Caco-2 cells, the intact small-intestinal segments contain NADPH-dependent aldo-keto reductases, which reduce the aldehyde carbonyl group of 3,4-DHPEA-EA and one of the two aldeydic carbonyl groups present on 3,4-DHPEA-EDA. These reduced forms are then glucuronidated and represent the major in vivo small-intestinal metabolites of the secoiridoids. In agreement with the cell studies, perfusion of the jejunum and ileum also yielded hydroxytyrosol and homovanillic alcohol and their respective glucuronides. We suggest that the reduced and glucuronidated forms represent novel physiological metabolites of the secoiridoids that should be pursued in vivo and investigated for their biological activity.
Net nutrient absorption and liver metabolism in lactating dairy cows fed supplemental dietary biotin
Resumo:
The effect of feeding supplemental biotin on net absorption and metabolism of nutrients by the portal-drained viscera (PDV; the gut, pancreas, spleen and associated fat) and liver of lactating dairy cows was measured. Three cows in early to mid-lactation catheterised for measurements of net nutrient absorption and metabolism by the PDV and liver were fed a total-mixed ration with or without supplemental biotin at 20 mg/day using a switch-back design (ABA v. BAB) with three 2-week periods. There were no effects of feeding biotin on dry matter intake (22.2 kg/day), milk yield (29.5 kg/day) or milk composition. There was also no effect of feeding biotin on net release of glucose by the liver, net liver removal of glucose precursors (propionate, alanine, lactate) or net liver release of p-hydroxybutyrate. Feeding biotin increased net PDV release of ammonia. Reasons for the response are not certain, but a numerical increase in net PDV release of acetate suggests that rumen or hindgut fermentation was altered. Results of the present study do not support the hypothesis that supplemental biotin increases liver glucose production in lactating dairy cows.
Resumo:
Background Lifestyle factors such as diet and physical activity have been shown to modify the association between fat mass and obesity–associated (FTO) gene variants and metabolic traits in several populations; however, there are no gene-lifestyle interaction studies, to date, among Asian Indians living in India. In this study, we examined whether dietary factors and physical activity modified the association between two FTO single nucleotide polymorphisms (rs8050136 and rs11076023) (SNPs) and obesity traits and type 2 diabetes (T2D). Methods The study included 734 unrelated T2D and 884 normal glucose-tolerant (NGT) participants randomly selected from the urban component of the Chennai Urban Rural Epidemiology Study (CURES). Dietary intakes were assessed using a validated interviewer administered semi-quantitative food frequency questionnaire (FFQ). Physical activity was based upon the self-report. Interaction analyses were performed by including the interaction terms in the linear/logistic regression model. Results There was a significant interaction between SNP rs8050136 and carbohydrate intake (% energy) (Pinteraction = 0.04), where the ‘A’ allele carriers had 2.46 times increased risk of obesity than those with ‘CC’ genotype (P = 3.0 × 10−5) among individuals in the highest tertile of carbohydrate intake (% energy, 71 %). A significant interaction was also observed between SNP rs11076023 and dietary fibre intake (Pinteraction = 0.0008), where individuals with AA genotype who are in the 3rd tertile of dietary fibre intake had 1.62 cm lower waist circumference than those with ‘T’ allele carriers (P = 0.02). Furthermore, among those who were physically inactive, the ‘A’ allele carriers of the SNP rs8050136 had 1.89 times increased risk of obesity than those with ‘CC’ genotype (P = 4.0 × 10−5). Conclusions This is the first study to provide evidence for a gene-diet and gene-physical activity interaction on obesity and T2D in an Asian Indian population. Our findings suggest that the association between FTO SNPs and obesity might be influenced by carbohydrate and dietary fibre intake and physical inactivity. Further understanding of how FTO gene influences obesity and T2D through dietary and exercise interventions is warranted to advance the development of behavioral intervention and personalised lifestyle strategies, which could reduce the risk of metabolic diseases in this Asian Indian population.
Resumo:
Rationale: In UK hospitals, the preparation of all total parenteral nutrition (TPN) products must be made in the pharmacy as TPNs are categorised as high-risk injectables (NPSA/2007/20). The National Aseptic Error Reporting Scheme has been collecting data on pharmacy compounding errors in the UK since August 2003. This study reports on types of error associated with the preparation of TPNs, including the stage at which these were identified and potential and actual patient outcomes. Methods: Reports of compounding errors for the period 1/2004 - 3/2007 were analysed on an Excel spreadsheet. Results: Of a total of 3691 compounding error reports, 674 (18%) related to TPN products; 548 adult vs. 126 paediatric. A significantly higher proportion of adult TPNs (28% vs. 13% paediatric) were associated with labelling errors and a significantly higher proportion of paediatric TPNs (25% vs. 15% adult) were associated with incorrect transcriptions (Chi-Square Test; p<0.005). Labelling errors were identified equally by pharmacists (42%) and technicians (48%) with technicians detecting mainly at first check and pharmacists at final check. Transcription errors were identified mainly by technicians (65% vs. 27% pharmacist) at first check. Incorrect drug selection (13%) and calculation errors (9%) were associated with adult and paediatric TPN preparations in the same ratio. One paediatric TPN error detected at first check was considered potentially catastrophic; 31 (5%) errors were considered of major and 38 (6%) of moderate potential consequence. Five errors (2 moderate, 1 minor) were identified during or after administration. Conclusions: While recent UK patient safety initiatives are aimed at improving the safety of injectable medicines in clinical areas, the current study highlights safety problems that exist within pharmacy production units. This could be used in the creation of an error management tool for TPN compounding processes within hospital pharmacies.
Resumo:
There is currently considerable interest in potential atherogenic and thrombogenic consequences of elevated concentrations of triacylglycerols, especially in the post-prandial state. Despite this, there is limited information on the effects of dietary fatty acids on the synthesis, secretion and metabolism of chylomicrons, the large triacylglycerol-rich lipoproteins synthesized in the enterocyte following the digestion and absorption of dietary fat. This brief review considers current approaches to the investigation of chylomicron synthesis and summarizes some of the human, cell and animal studies that have investigated effects of different fatty acids on these pathways. Potential sites for modulatory effects of dietary fatty acids on the molecular events of chylomicron synthesis are proposed in the light of the recent model that has been developed from cell and animal studies and observations based on abnormalities in chylomicron formation in human inherited autosomal recessive diseases.
Resumo:
Milk solids yield in modern dairy cows has increased linearly over the last 50 years, stressing the need for maximal dietary energy intake to allow genetic potential for milk energy yield to be realized with minimal negative effects on health and reproduction. Feeding supplemental starch is a common approach for increasing the energy density of the ration and supplying carbon for meeting the substantial glucose requirement of the higher yielding cow. In this regard, it is a long held belief that feeding starch in forms that increase digestion in the small intestine and glucose absorption will benefit the cow in terms of energetic efficiency and production response, but data supporting this dogma are equivocal. This review will consider the impact of supplemental starch and site of starch digestion on metabolic and production responses of lactating dairy cows, including effects on feed intake, milk yield and composition, nutrient partitioning, the capacity of the small intestine for starch digestion, and nutrient absorption and metabolism by the splanchnic tissues (the portal-drained viscera and liver). Whilst there appears to be considerable capacity for starch digestion and glucose absorption in the lactating dairy cow, numerous strategic studies implementing postruminal starch or glucose infusions have observed increases in milk yield, but decreased milk fat concentration such that there is little effect on milk energy yield, even in early lactation. Measurements of energy balance confirm that the majority of the supplemental energy arising from postruminal starch digestion is used with high efficiency to support body adipose and protein retention, even in early lactation. These responses may be mediated by changes in insulin status, and be beneficial to the cow in terms of reproductive success and well-being. However, shifting starch digestion from the rumen impacts the nitrogen economy of the cow as well by shifting the microbial protein gained from starch digestion from potentially absorbable protein to endogenous faecal loss.
Resumo:
Background & aims: This study investigated the influence of four commercial lipid emulsions, Ivelip, ClinOleic, Omegaven and SMOFlipid (R), on lipid body formation, fatty acid composition and eicosanoid production by cultured human peripheral blood polymorphonuclear cells (PMN) and mononuclear cells (PBMC). Methods: PMN and PBMC were exposed to emulsions at concentrations ranging from 0.01 to 0.04%. Lipid body formation was assessed by microscopy, fatty acid composition by gas chromatography and eicosanoids by ELISA. Results: Stimulation of inflammatory cells and exposure to lipid emulsions promoted the formation of lipid bodies, but there did not appear to be differential effects of the emulsions tested. In contrast, there were differential effects of lipid emulsions on eicosanoid formation, particularly with regards to LTB4 production by PMN. Omegaven dramatically increased production of eicosanoids compared with the other emulsions in a dose-dependent manner. This effect was associated with a significantly higher level of lipid peroxides in the supernatants of cells exposed to Omegaven. Conclusions: Stimulation of inflammatory cells and exposure to lipid emulsions promotes lipid body formation and eicosanoid production, although the differential effects of different emulsions appear to be largely due to lipid peroxidation of unsaturated fatty acids in some emulsions in this in vitro system. (C) 2009 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Resumo:
Background & aims: Long term parenteral nutrition rarely supplies the long chain n-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). The aim of this study was to assess long chain n-3 PUFA status in patients receiving home parenteral. nutrition (HPN). Methods: Plasma phospholipid fatty acids were measured in 64 adult HPN patients and compared with 54 age, sex and BMI matched controls. Logistic regression analysis was used to identify factors related to plasma fatty acid fractions in the HPN patients, and to identify factors associated with the risk of clinical. complications. Results: Plasma phospholipid fractions of EPA, DPA and DHA were significantly tower in patients receiving HPN. Factors independently associated with tow fractions included high parenteral energy provision, tow parenteral lipid intake, tow BMI and prolonged duration of HPN. Long chain n-3 PUFA fractions were not associated with incidence of either central venous catheter associated infection or central venous thrombosis. However, the fraction of EPA were inversely associated with plasma alkaline phosphatase concentrations. Conclusions: This study demonstrates abnormal long chain n-3 PUFA profiles in patients receiving HPN. Reduced fatty acid intake may be partly responsible. Fatty acid metabolism may also be altered. (C) 2008 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.