32 resultados para Energy flow
Resumo:
We have investigated methane (CH4) dissociative chemisorption on the Ni{100} surface by first-principles molecular dynamics (MD) simulations. Our results show that this reaction is mode-specific, with the n1 state being the most strongly coupled to efficient energy flow into the reaction coordinate when the molecule reaches the transition state. By performing MD simulations for two different transition state (TS) structures we provide evidence of TS structure-specific energy redistribution in methane chemisorption. Our results are compared with recently reported state-resolved measurement of methane adsorption probability on nickel surfaces, and we find that a strong correlation exists between the highest vibrational efficacy measured on Ni{100} for the n1 state and the calculated highest fractional vibrational energy content in this mode.
Resumo:
Vibrational spectroscopy at high excitation is an important research frontier for two reasons. Firstly, the near infrared is proving to be an important area for the analytical applications of spectroscopy, and we would therefore like to understand how the spectra we observe relate to the molecular structure of the absorbing species. Secondly, there is a fundamental interest in understanding molecular dynamics and energy flow within a polyatomic molecule at high excitation, because this is the boundary between spectroscopy and chemistry through which we try to understand the details of a chemical reaction. In this presentation I shall survey recent progress in this field.
Resumo:
1. Suspension feeding by caseless caddisfly larvae (Trichoptera) constitutes a major pathway for energy flow, and strongly influences productivity, in streams and rivers. 2. Consideration of the impact of these animals on lotic ecosystems has been strongly influenced by a single study investigating the efficiency of particle capture of nets built by one species of hydropsychid caddisfly. 3. Using water sampling techniques at appropriate spatial scales, and taking greater consideration of local hydrodynamics than previously, we examined the size-frequency distribution of particles captured by the nets of Hydropsyche siltalai. Our results confirm that capture nets are selective in terms of particle size, and in addition suggest that this selectivity is for particles likely to provide the most energy. 4. By incorporating estimates of flow diversion around the nets of caseless caddisfly larvae, we show that capture efficiency (CE) is considerably higher than previously estimated, and conclude that more consideration of local hydrodynamics is needed to evaluate the efficiency of particle capture. 5. We use our results to postulate a mechanistic explanation for a recent example of interspecific facilitation, whereby a reduction of near-bed velocities seen in single species monocultures leads to increased capture rates and local depletion of seston within the region of reduced velocity.
Resumo:
A Bond Graph is a graphical modelling technique that allows the representation of energy flow between the components of a system. When used to model power electronic systems, it is necessary to incorporate bond graph elements to represent a switch. In this paper, three different methods of modelling switching devices are compared and contrasted: the Modulated Transformer with a binary modulation ratio (MTF), the ideal switch element, and the Switched Power Junction (SPJ) method. These three methods are used to model a dc-dc Boost converter and then run simulations in MATLAB/SIMULINK. To provide a reference to compare results, the converter is also simulated using PSPICE. Both quantitative and qualitative comparisons are made to determine the suitability of each of the three Bond Graph switch models in specific power electronics applications
Resumo:
We design consistent discontinuous Galerkin finite element schemes for the approximation of a quasi-incompressible two phase flow model of Allen–Cahn/Cahn–Hilliard/Navier–Stokes–Korteweg type which allows for phase transitions. We show that the scheme is mass conservative and monotonically energy dissipative. In this case the dissipation is isolated to discrete equivalents of those effects already causing dissipation on the continuous level, that is, there is no artificial numerical dissipation added into the scheme. In this sense the methods are consistent with the energy dissipation of the continuous PDE system.
Resumo:
Turbulence statistics obtained by direct numerical simulations are analysed to investigate spatial heterogeneity within regular arrays of building-like cubical obstacles. Two different array layouts are studied, staggered and square, both at a packing density of λp=0.25 . The flow statistics analysed are mean streamwise velocity ( u− ), shear stress ( u′w′−−−− ), turbulent kinetic energy (k) and dispersive stress fraction ( u˜w˜ ). The spatial flow patterns and spatial distribution of these statistics in the two arrays are found to be very different. Local regions of high spatial variability are identified. The overall spatial variances of the statistics are shown to be generally very significant in comparison with their spatial averages within the arrays. Above the arrays the spatial variances as well as dispersive stresses decay rapidly to zero. The heterogeneity is explored further by separately considering six different flow regimes identified within the arrays, described here as: channelling region, constricted region, intersection region, building wake region, canyon region and front-recirculation region. It is found that the flow in the first three regions is relatively homogeneous, but that spatial variances in the latter three regions are large, especially in the building wake and canyon regions. The implication is that, in general, the flow immediately behind (and, to a lesser extent, in front of) a building is much more heterogeneous than elsewhere, even in the relatively dense arrays considered here. Most of the dispersive stress is concentrated in these regions. Considering the experimental difficulties of obtaining enough point measurements to form a representative spatial average, the error incurred by degrading the sampling resolution is investigated. It is found that a good estimate for both area and line averages can be obtained using a relatively small number of strategically located sampling points.
Resumo:
This paper describes laboratory observations of inertia–gravity waves emitted from balanced fluid flow. In a rotating two-layer annulus experiment, the wavelength of the inertia–gravity waves is very close to the deformation radius. Their amplitude varies linearly with Rossby number in the range 0.05–0.14, at constant Burger number (or rotational Froude number). This linear scaling challenges the notion, suggested by several dynamical theories, that inertia–gravity waves generated by balanced motion will be exponentially small. It is estimated that the balanced flow leaks roughly 1% of its energy each rotation period into the inertia–gravity waves at the peak of their generation. The findings of this study imply an inevitable emission of inertia–gravity waves at Rossby numbers similar to those of the large-scale atmospheric and oceanic flow. Extrapolation of the results suggests that inertia–gravity waves might make a significant contribution to the energy budgets of the atmosphere and ocean. In particular, emission of inertia–gravity waves from mesoscale eddies may be an important source of energy for deep interior mixing in the ocean.
Resumo:
The impact of targeted sonde observations on the 1-3 day forecasts for northern Europe is evaluated using the Met Office four-dimensional variational data assimilation scheme and a 24 km gridlength limited-area version of the Unified Model (MetUM). The targeted observations were carried out during February and March 2007 as part of the Greenland Flow Distortion Experiment, using a research aircraft based in Iceland. Sensitive area predictions using either total energy singular vectors or an ensemble transform Kalman filter were used to predict where additional observations should be made to reduce errors in the initial conditions of forecasts for northern Europe. Targeted sonde data was assimilated operationally into the MetUM. Hindcasts show that the impact of the sondes was mixed. Only two out of the five cases showed clear forecast improvement; the maximum forecast improvement seen over the verifying region was approximately 5% of the forecast error 24 hours into the forecast. These two cases are presented in more detail: in the first the improvement propagates into the verification region with a developing polar low; and in the second the improvement is associated with an upper-level trough. The impact of cycling targeted data in the background of the forecast (including the memory of previous targeted observations) is investigated. This is shown to cause a greater forecast impact, but does not necessarily lead to a greater forecast improvement. Finally, the robustness of the results is assessed using a small ensemble of forecasts.
Resumo:
We report the first systematic study on the photocatalytic oxidation of humic acid (HA) in artificial seawater (ASW). TiO2 (Degussa P25) dispersions were used as the catalyst with irradiation from a medium-pressure mercury lamp. The optimum quantity of catalyst was found to be between 2 and 2.5 g l(-1); whiled the decomposition was fastest at low pH values (pH 4.5 in the range examined), and the optimum air-flow, using an immersion well reactor with a capacity of 400 ml, was 850 ml min(-1). Reactivity increased with air-flow up to this figure, above which foaming prevented operation of the reactor. Using pure. oxygen, an optimal flow rate was observed at 300 nil min(-1), above which reactivity remains essentially constant. Following treatment for 1 h, low-salinity water (2700 mg l(-1)) was completely mineralised, whereas ASW (46000 mg l(-1)) had traces of HA remaining. These effects are interpreted and kinetic data presented. To avoid problems of precipitation due to change of ionic strength humic substances were prepared directly in ASW, and the effects of ASW on catalyst suspension and precipitation have been taken into account. The Langmuir-Hinshelwood kinetic model has been shown to be followed only approximately for the catalytic oxidation of HA in ASW. The activation energy for the reaction derived from an Arrhenius treatment was 17 ( +/-0.6) kJ mol(-1). (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The self-assembly into wormlike micelles of a poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymer Pluronic P84 in aqueous salt solution (2 M NaCl) has been studied by rheology, small-angle X-ray and neutron scattering (SAXS/SANS), and light scattering. Measurements of the flow curves by controlled stress rheometry indicated phase separation under flow. SAXS on solutions subjected to capillary flow showed alignment of micelles at intermediate shear rates, although loss of alignment was observed for high shear rates. For dilute solutions, SAXS and static light scattering data on unaligned samples could be superposed over three decades in scattering vector, providing unique information on the wormlike micelle structure over several length scales. SANS data provided information on even shorter length scales, in particular, concerning "blob" scattering from the micelle corona. The data could be modeled based on a system of semiflexible self-avoiding cylinders with a circular cross-section, as described by the wormlike chain model with excluded volume interactions. The micelle structure was compared at two temperatures close to the cloud point (47 degrees C). The micellar radius was found not to vary with temperature in this region, although the contour length increased with increasing temperature, whereas the Kuhn length decreased. These variations result in an increase of the low-concentration radius of gyration with increasing temperature. This was consistent with dynamic light scattering results, and, applying theoretical results from the literature, this is in agreement with an increase in endcap energy due to changes in hydration of the poly(ethylene oxide) blocks as the temperature is increased.
Resumo:
Attempts to reduce the energy consumed in UK homes have met with limited success. One reason for this is a lack of understanding of how people interact with domestic technology – heating systems, lights, electrical equipment and so forth. Attaining such an understanding is hampered by a chronic shortage of detailed energy use data matched to descriptions of the house, the occupants, the internal conditions and the installed services and appliances. Without such information it is impossible to produce transparent and valid models for understanding and predicting energy use. The Carbon Reduction in Buildings (CaRB) consortium of five UK universities plans to develop socio-technical models of energy use, underpinned by a flow of data from a longitudinal monitoring campaign involving several hundred UK homes. This paper outlines the models proposed, the preliminary monitoring work and the structure of the proposed longitudinal study.
Resumo:
A theoretical framework for the joint conservation of energy and momentum in the parameterization of subgrid-scale processes in climate models is presented. The framework couples a hydrostatic resolved (planetary scale) flow to a nonhydrostatic subgrid-scale (mesoscale) flow. The temporal and horizontal spatial scale separation between the planetary scale and mesoscale is imposed using multiple-scale asymptotics. Energy and momentum are exchanged through subgrid-scale flux convergences of heat, pressure, and momentum. The generation and dissipation of subgrid-scale energy and momentum is understood using wave-activity conservation laws that are derived by exploiting the (mesoscale) temporal and horizontal spatial homogeneities in the planetary-scale flow. The relations between these conservation laws and the planetary-scale dynamics represent generalized nonacceleration theorems. A derived relationship between the wave-activity fluxes-which represents a generalization of the second Eliassen-Palm theorem-is key to ensuring consistency between energy and momentum conservation. The framework includes a consistent formulation of heating and entropy production due to kinetic energy dissipation.
Resumo:
This paper provides a comparative study of the performance of cross-flow and counter-flow M-cycle heat exchangers for dew point cooling. It is recognised that evaporative cooling systems offer a low energy alternative to conventional air conditioning units. Recently emerged dew point cooling, as the renovated evaporative cooling configuration, is claimed to have much higher cooling output over the conventional evaporative modes owing to use of the M-cycle heat exchangers. Cross-flow and counter-flow heat exchangers, as the available structures for M-cycle dew point cooling processing, were theoretically and experimentally investigated to identify the difference in cooling effectiveness of both under the parallel structural/operational conditions, optimise the geometrical sizes of the exchangers and suggest their favourite operational conditions. Through development of a dedicated computer model and case-by-case experimental testing and validation, a parametric study of the cooling performance of the counter-flow and cross-flow heat exchangers was carried out. The results showed the counter-flow exchanger offered greater (around 20% higher) cooling capacity, as well as greater (15%–23% higher) dew-point and wet-bulb effectiveness when equal in physical size and under the same operating conditions. The cross-flow system, however, had a greater (10% higher) Energy Efficiency (COP). As the increased cooling effectiveness will lead to reduced air volume flow rate, smaller system size and lower cost, whilst the size and cost are the inherent barriers for use of dew point cooling as the alternation of the conventional cooling systems, the counter-flow system is considered to offer practical advantages over the cross-flow system that would aid the uptake of this low energy cooling alternative. In line with increased global demand for energy in cooling of building, largely by economic booming of emerging developing nations and recognised global warming, the research results will be of significant importance in terms of promoting deployment of the low energy dew point cooling system, helping reduction of energy use in cooling of buildings and cut of the associated carbon emission.
Resumo:
The impact of pronounced positive and negative sea surface temperature (STT) anomalies in the tropical Pacific associated with the El Niño/Southern Oscillation (ENSO) phenomenon on the atmospheric circulation in the Northern Hemisphere extratropics during the boreal winter season is investigated. This includes both the impact on the seasonal mean flow and on the intraseasonal variability on synoptic time scales. Moreover, the interaction between the transient fluctuations on these times scales and the mean circulation is examined. Both data from an ensemble of five simulations with the ECHAM3 atmospheric general circulation model at a horizontal resolution of T42 each covering the period from 1979 through 1992 and operational analyses from ECMWF for the corresponding period are examined. In each of the simulations observed SSTs for the period of investigation are given as lower boundary forcing, but different atmospheric initial conditions are prescribed. The simulations with ECHAM3 reveal a distinct impact of the pronounced SST-anomalies in the tropical Pacific on the atmospheric circulation in the Northern Hemisphere extratropics during El Niño as well as during La Niña events. These changes in the atmospheric circulation, which are found to be highly significant in the Pacific/North American as well as in the Atlantic/European region, are consistent with the essential results obtained from the analyses. The pronounced SST-anomalies in the tropical Pacific lead to changes in the mean circulation, which are characterized by typical circulation patterns. These changes in the mean circulation are accompanied by marked variations of the activity of the transient fluctuations on synoptic time scales, that are changes in both the kinetic energy on these time scales and the atmospheric transports of momentum and heat accomplished by the short baroclinic waves. The synoptic disturbances, on the other hand, play also an important role in controlling the changes in the mean circulation associated with the ENSO phenomenon. They maintain these typical circulation patterns via barotropic, but counteract them via baroclinic processes. The hypothesis of an impact of the ENSO phenomenon in the Atlantic/European region can be supported. As the determining factor the intensification (reduction) of the Aleutian low and the simultaneous reduction (intensification) of the Icelandic low during El Niño and during La Niña events respectively, is identified. The changes in the intensity of the Aleutian low during the ENSO-events are accompanied by an alteration of the transport of momentum caused by the short baroclinic waves over the North American continent in such a way that the changes in the intensity of the Icelandic low during El Niño as well as during La Niña events are maintained.
Resumo:
Global horizontal wavenumber kinetic energy spectra and spectral fluxes of rotational kinetic energy and enstrophy are computed for a range of vertical levels using a T799 ECMWF operational analysis. Above 250 hPa, the kinetic energy spectra exhibit a distinct break between steep and shallow spectral ranges, reminiscent of dual power-law spectra seen in aircraft data and high-resolution general circulation models. The break separates a large-scale ‘‘balanced’’ regime in which rotational flow strongly dominates divergent flow and a mesoscale ‘‘unbalanced’’ regime where divergent energy is comparable to or larger than rotational energy. Between 230 and 100 hPa, the spectral break shifts to larger scales (from n 5 60 to n 5 20, where n is spherical harmonic index) as the balanced component of the flow preferentially decays. The location of the break remains fairly stable throughout the stratosphere. The spectral break in the analysis occurs at somewhat larger scales than the break seen in aircraft data. Nonlinear spectral fluxes defined for the rotational component of the flow maximize between about 300 and 200 hPa. Large-scale turbulence thus centers on the extratropical tropopause region, within which there are two distinct mechanisms of upscale energy transfer: eddy–eddy interactions sourcing the transient energy peak in synoptic scales, and zonal mean–eddy interactions forcing the zonal flow. A well-defined downscale enstrophy flux is clearly evident at these altitudes. In the stratosphere, the transient energy peak moves to planetary scales and zonal mean–eddy interactions become dominant.