44 resultados para Electrosensitive organs
Resumo:
Escherichia coli, the most common cause of bacteraemia in humans in the UK, can also cause serious diseases in animals. However the population structure, virulence and antimicrobial resistance genes of those from extraintestinal organs of livestock animals are poorly characterised. The aims of this study were to investigate the diversity of these isolates from livestock animals and to understand if there was any correlation between the virulence and antimicrobial resistance genes and the genetic backbone of the bacteria and if these isolates were similar to those isolated from humans. Here 39 E. coli isolates from liver (n=31), spleen (n=5) and blood (n=3) of cattle (n=34), sheep (n=3), chicken (n=1) and pig (n=1) were assigned to 19 serogroups with O8 being the most common (n=7), followed by O101, O20 (both n=3) and O153 (n=2). They belong to 29 multi-locus sequence types, 20 clonal complexes with ST23 (n=7), ST10 (n=6), ST117 and ST155 (both n=3) being most common and were distributed among phylogenetic group A (n=16), B1 (n=12), B2 (n=2) and D (n=9). The pattern of a subset of putative virulence genes was different in almost all isolates. No correlation between serogroups, animal hosts, MLST types, virulence and antimicrobial resistance genes was identified. The distributions of clonal complexes and virulence genes were similar to other extraintestinal or commensal E. coli from humans and other animals, suggesting a zoonotic potential. The diverse and various combinations of virulence genes implied that the infections were caused by different mechanisms and infection control will be challenging.
Resumo:
Predicting metal bioaccumulation and toxicity in soil organisms is complicated by site-specific biotic and abiotic parameters. In this study we exploited tissue fractionation and digestion techniques, combined with X-ray absorption spectroscopy (XAS), to investigate the whole-body and subcellular distributions, ligand affinities, and coordination chemistry of accumulated Pb and Zn in field populations of the epigeic earthworm Lumbricus rubellus inhabiting three contrasting metalliferous and two unpolluted soils. Our main findings were (i) earthworms were resident in soils with concentrations of Pb and Zn ranging from 1200 to 27 000 mg kg(-1) and 200 to 34 000 mg kg(-1), respectively; (ii) Pb and Zn primarily accumulated in the posterior alimentary canal in nonsoluble subcellular fractions of earthworms; (iii) site-specific differences in the tissue and subcellular partitioning profiles of populations were observed, with earthworms from a calcareous site partitioning proportionally more Pb to their anterior body segments and Zn to the chloragosome-rich subcellular fraction than their acidic-soil inhabiting counterparts; (iv) XAS indicated that the interpopulation differences in metal partitioning between organs were not accompanied by qualitative differences in ligand-binding speciation, because crystalline phosphate-containing pyromorphite was a predominant chemical species in the whole-worm tissues of all mine soil residents. Differences in metal (Pb, Zn) partitioning at both organ and cellular levels displayed by field populations with protracted histories of metal exposures may reflect their innate ecophysiological responses to essential edaphic variables, such as Ca2+ status. These observations are highly significant in the challenging exercise of interpreting holistic biomarker data delivered by "omic" technologies.
Resumo:
Fundamental nutrition seeks to describe the complex biochemical reactions involved in assimilation and processing of nutrients by various tissues and organs, and to quantify nutrient movement (flux) through those processes. Over the last 25 yr, considerable progress has been made in increasing our understanding of metabolism in dairy cattle. Major advances have been made at all levels of biological organization, including the whole animal, organ systems, tissues, cells, and molecules. At the whole-animal level, progress has been made in delineating metabolism during late pregnancy and the transition to lactation, as well as in whole-body use of energy-yielding substrates and amino acids for growth in young calves. An explosion of research using multicatheterization techniques has led to better quantitative descriptions of nutrient use by tissues of the portal-drained viscera (digestive tract, pancreas, and associated adipose tissues) and liver. Isolated tissue preparations have provided important information on the interrelationships among glucose, fatty acid, and amino acid metabolism in liver, adipose tissue, and mammary gland, as well as the regulation of these pathways during different physiological states. Finally, the last 25 yr has witnessed the birth of "molecular biology" approaches to understanding fundamental nutrition. Although measurements of mRNA abundance for proteins of interest already have provided new insights into regulation of metabolism, the next 25 yr will likely see remarkable advances as these techniques continue to be applied to problems of dairy cattle biology. Integration of the "omics" technologies (functional genomics, proteomics, and metabolomics) with measurements of tissue metabolism obtained by other methods is a particularly exciting prospect for the future. The result should be improved animal health and well being, more efficient dairy production, and better models to predict nutritional requirements and provide rations to meet those requirements.
Resumo:
An experiment was carried out to establish the effect on the growth of pigs of including blood meal or lysine in diets containing gossypol from cottenseed cake. Forty Landrace x Large White pigs (20 of each sex) were randomly allocated to 5 treatments of 8 pigs each in a 2x2 factorial design with two levels of lysine or two levels of blood meal in the diets plus a control diet. The pigs were fed different diets and slaughtered at 75.0+/-2.0 kg live weight for carcase analysis. Supplementing the diets with blood meal resulted in higher live weight gains (p<0.001) and improved feed conversion ratios (p<0.001) than supplementing with lysine. Pigs fed the higher level of cottonseed cake showed a significant (p<0.001) depression in live weight gain and feed conversion ratio compared to those fed a low level of the cake. There was no significant difference (p>0.05) in intake in the pigs fed diets with cottonseed cake including blood meal or synthetic lysine. The kidney and liver weights of the pigs fed the diets with a higher level of cottonseed cake were significantly greater (p<0.001) than in those fed the lower level, but when the diets containing cottonseed cake were supplemented with blood meal or lysine at the same level there was no significant difference (p>0.05) in the weights of these organs. Lysine or other factors derived from blood meal appear to be more efficient than synthetic lysine in reducing the adverse effects of gossypol.
Resumo:
An experiment was conducted to determine the effects of including cottonseed cake in rations for weaned growing pigs. Thirty-two Landrace x Large White pigs, weighing 20-24 kg, were included in four blocks formed on the basis of initial weight within sex in an otherwise completely randomized block design. The pigs were killed when they reached a live weight of 75.0 +/- 2.0 kg and the half careases were analysed into cuts and the weights of the organs were recorded. An estimate of the productivity of the pigs on each diet was calculated. Cottonseed cake reduced the voluntary feed intake (p < 0.001) and live weight gains (p < 0.001) and increased the heart, kidney and liver weights (p < 0.01). The pigs on the soya bean-based control diet took the shortest time to reach slaughter weight. The result was probably in part due to lysine deficiency and in part to the effect of free gossypol. It was found that it is at present cost-effective to include cottonseed cake in pig weaner grower diets up to 300 g/kg in Cameroon.
Resumo:
A mathematical model is presented to understand heat transfer processes during the cooling and re-warming of patients during cardiac surgery. Our compartmental model is able to account for many of the qualitative features observed in the cooling of various regions of the body including the central core containing the majority of organs, the rectal region containing the intestines and the outer peripheral region of skin and muscle. In particular, we focus on the issue of afterdrop: a drop in core temperature following patient re-warming, which can lead to serious post-operative complications. Model results for a typical cooling and re-warming procedure during surgery are in qualitative agreement with experimental data in producing the afterdrop effect and the observed dynamical variation in temperature between the core, rectal and peripheral regions. The influence of heat transfer processes and the volume of each compartmental region on the afterdrop effect is discussed. We find that excess fat on the peripheral and rectal regions leads to an increase in the afterdrop effect. Our model predicts that, by allowing constant re-warming after the core temperature has been raised, the afterdrop effect will be reduced.
Resumo:
The recent emergence of novel pathogenic human and animal coronaviruses has highlighted the need for antiviral therapies that are effective against a spectrum of these viruses. We have used several strains of murine hepatitis virus (MHV) in cell culture and in vivo in mouse models to investigate the antiviral characteristics of peptide-conjugated antisense phosphorodiamidate morpholino oligomers (P-PMOs). Ten P-PMOs directed against various target sites in the viral genome were tested in cell culture, and one of these (5TERM), which was complementary to the 5' terminus of the genomic RNA, was effective against six strains of MHV. Further studies were carried out with various arginine-rich peptides conjugated to the 5TERM PMO sequence in order to evaluate efficacy and toxicity and thereby select candidates for in vivo testing. In uninfected mice, prolonged P-PMO treatment did not result in weight loss or detectable histopathologic changes. 5TERM P-PMO treatment reduced viral titers in target organs and protected mice against virus-induced tissue damage. Prophylactic 5TERM P-PMO treatment decreased the amount of weight loss associated with infection under most experimental conditions. Treatment also prolonged survival in two lethal challenge models. In some cases of high-dose viral inoculation followed by delayed treatment, 5TERM P-PMO treatment was not protective and increased morbidity in the treated group, suggesting that P-PMO may cause toxic effects in diseased mice that were not apparent in the uninfected animals. However, the strong antiviral effect observed suggests that with further development, P-PMO may provide an effective therapeutic approach against a broad range of coronavirus infections.
Resumo:
Floral meristems are generally determinate. Termination of their activity varies with species, occurring after carpel or ovule development, depending on the placentation type. In terminal flowering Impatiens balsamina (cv. Dwarf Bush Flowered) some flowers exhibit meristem indeterminacy; they produce organs from the placenta after ovule development. Here we provide a detailed description of gynoecium development in this line and explore the basis of the indeterminate nature of some of its floral meristems. We find that the placenta is sometimes established without complete carpel fusion. Proliferative growth derives from meristematic remnants of the placenta and is more common in the terminal inflorescence. RNA in situ hybridization reveals that IbLFY (Impatiens LFY homologue) is expressed in all meristem states, even in proliferating meristems. Expression of IbAG in axillary flowers is as expected in the meristem, stamens and carpels but absent from the proliferating meristem. We conclude that I. balsamina has cauline placentation. Incomplete suppression of inflorescence identity in flowers of the terminal inflorescence leads to floral meristem proliferation after ovule development in this species.
Resumo:
The ascidian Ciona intestinalis, a marine invertebrate chordate, is an emerging model system for developmental and evolutionary studies. The endostyle, one of the characteristic organs of ascidians, is a pharyngeal structure with iodine-concentrating and peroxidase activities and is therefore considered to be homologous to the follicular thyroid of higher vertebrates. We have previously reported that a limited part of the endostyle (zone VII) is marked by the expression of orthologs of the thyroid peroxidase (TPO) and thyroid transcription factor-2 (TTF-2/FoxE) genes. In this study, we have identified the Ciona homolog of NADPH oxidase/peroxidase (Duox), which provides hydrogen peroxide (H2O2) for iodine metabolism by TPO in the vertebrate thyroid. Expression patterns assessed by in situ hybridization have revealed that Ciona Duox (Ci-Duox) is predominantly expressed in the dorsal part of zone VII of the endostyle. Furthermore, two-color fluorescent in situ hybridization with Ci-Duox and Ciona TPO (CiTPO) has revealed that the ventral boundary of the Ci-Duox domain of expression is more dorsal than that of CiTPO. We have also characterized several genes, such as Ci-Fgf8/17/18, 5HT7, and Ci-NK4, which are predominantly expressed in the ventral part of zone VII, in a region complementary to the Ci-Duox expression domain. These observations suggest that, at the molecular level, zone VII has a complex organization that might have some impact on the specification of cell types and functions in this thyroid-equivalent element of the ascidian endostyle.
Resumo:
To investigate flower induction in June-bearing strawberry plants, morphological changes in shoot apices and Historic H4 expression in the central zone during flower initiation were observed. Strawberry plants were placed under flower inducible, short-day conditions (23 degrees C/17 degrees C, 10 h day length) for differing number of days (8, 16, 20, 24 or 32 days) and then these plants were transferred to non-inducible, long-day conditions (25 degrees C/20 degrees C, 14 h day length). The shoot apices of plants placed under short-day conditions for 8 days were flat, similar to shoot apices of plants in the vegetative phase of development, and Histone H4 was not expressed in the central zone during the experimental period. On the other hand, the shoot apices of plants placed under short-day conditions for 16 days remained flat, similar to shoot apices of plants placed under short-day conditions for 8 days, but Histone H4 was expressed in the central zone at the end of the short-day treatment. Morphological changes in the shoot apices of these plants were observed 8 days after the change in day-length. These plants developed differentiated flower organs after they were grown for another 30 days under long-day conditions. These results indicate that changes in the expression pattern of the Histone H4 gene occur before morphological changes during flower induction and that the expression of the gene in the central zone can be used as one of the indicators of the flowering process in strawberries. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The vertebrate cranial sensory placodes are ectodermal embryonic patches that give rise to sensory receptor cells of the peripheral paired sense organs and to neurons in the cranial sensory ganglia. Their differentiation and the genetic pathways that underlay their development are now well understood. Their evolutionary history, however, has remained obscure. Recent molecular work, performed on close relatives of the vertebrates, demonstrated that some sensory placodes (namely the adenohypophysis, the olfactory, and accoustico-lateralis placodes) first evolved at the base of the chordate lineage, while others might be specific to vertebrates. Combined with morphological and cellular fate data, these results also suggest that the sensory placodes of the ancestor of all chordates differentiated into a wide range of structures, most likely to fit the lifestyle and environment of each species.
Molecular evidence from ascidians for the evolutionary origin of vertebrate cranial sensory placodes
Resumo:
Cranial sensory placodes are specialised areas of the head ectoderm of vertebrate embryos that contribute to the formation of the cranial sense organs and associated ganglia. Placodes are often considered a vertebrate innovation, and their evolution has been hypothesised as one key adaptation underlying the evolution of active predation by primitive vertebrates. Here, we review recent molecular evidence pertinent to understanding the evolutionary origin of placodes. The development of vertebrate placodes is regulated by numerous genes, including members of the Pax, Six, Eya, Fox, Phox, Neurogenin and Pou gene families. In the sea squirt Ciona intestinalis (a basal chordate and close relative of the vertebrates), orthologues of these genes are deployed in the development of the oral and atrial siphons, structures used for filter feeding by the sessile adult. Our interpretation of these findings is that vertebrate placodes and sea squirt siphon primordia have evolved from the same patches of specialised ectoderm present in the common ancestor of the chordates.
Resumo:
Cranial sensory placodes are focused areas of the head ectoderm of vertebrates that contribute to the development of the cranial sense organs and their associated ganglia. Placodes have long been considered a key character of vertebrates, and their evolution is proposed to have been essential for the evolution of an active predatory lifestyle by early vertebrates. Despite their importance for understanding vertebrate origins, the evolutionary origin of placodes has remained obscure. Here, we use a panel of molecular markers from the Six, Eya, Pax, Dach, FoxI, COE and POUIV gene families to examine the tunicate Ciona intestinalis for evidence of structures homologous to vertebrate placodes. Our results identify two domains of Ciona ectoderm that are marked by the genetic cascade that regulates vertebrate placode formation. The first is just anterior to the brain, and we suggest this territory is equivalent to the olfactoty/adenohypophyseal placodes of vertebrates. The second is a bilateral domain adjacent to the posterior brain and includes cells fated to form the atrium and atrial siphon of adult Ciona. We show this bares most similarity to placodes fated to form the vertebrate acoustico-lateralis system. We interpret these data as support for the hypothesis that sensory placodes did not arise de novo in vertebrates, but evolved froth pre-existing specialised areas of ectoderm that contributed to sensory organs in the common ancestor of vertebrate and tunicates. Published by Elsevier Inc.
Resumo:
Senescence of plant organs is a genetically controlled process that regulates cell death to facilitate nutrient recovery and recycling, and frequently precedes, or is concomitant with, ripening of reproductive structures. In Arabidopsis thaliana, the seeds are contained within a silique, which is itself a photosynthetic organ in the early stages of development and undergoes a programme of senescence prior to dehiscence. A transcriptional analysis of the silique wall was undertaken to identify changes in gene expression during senescence and to correlate these events with ultrastructural changes. The study revealed that the most highly up-regulated genes in senescing silique wall tissues encoded seed storage proteins, and the significance of this finding is discussed. Global transcription profiles of senescing siliques were compared with those from senescing Arabidopsis leaf or petal tissues using microarray datasets and metabolic pathway analysis software (MapMan). In all three tissues, members of NAC and WRKY transcription factor families were up-regulated, but components of the shikimate and cell-wall biosynthetic pathways were down-regulated during senescence. Expression of genes encoding ethylene biosynthesis and action showed more similarity between senescing siliques and petals than between senescing siliques and leaves. Genes involved in autophagy were highly expressed in the late stages of death of all plant tissues studied, but not always during the preceding remobilization phase of senescence. Analyses showed that, during senescence, silique wall tissues exhibited more transcriptional features in common with petals than with leaves. The shared and distinct regulatory events associated with senescence in the three organs are evaluated and discussed.
Resumo:
A fast neutron-mutagenized population of Arabidopsis ( Arabidopsis thaliana) Columbia-0 wild-type plants was screened for floral phenotypes and a novel mutant, termed hawaiian skirt ( hws), was identified that failed to shed its reproductive organs. The mutation is the consequence of a 28 bp deletion that introduces a premature amber termination codon into the open reading frame of a putative F-box protein ( At3g61590). The most striking anatomical characteristic of hws plants is seen in flowers where individual sepals are fused along the lower part of their margins. Crossing of the abscission marker, Pro(PGAZAT):beta-glucuronidase, into the mutant reveals that while floral organs are retained it is not the consequence of a failure of abscission zone cells to differentiate. Anatomical analysis indicates that the fusion of sepal margins precludes shedding even though abscission, albeit delayed, does occur. Spatial and temporal characterization, using Pro(HWS):beta-glucuronidase or Pro(HWS):green fluorescent protein fusions, has identified HWS expression to be restricted to the stele and lateral root cap, cotyledonary margins, tip of the stigma, pollen, abscission zones, and developing seeds. Comparative phenotypic analyses performed on the hws mutant, Columbia-0 wild type, and Pro(35S):HWS ectopically expressing lines has revealed that loss of HWS results in greater growth of both aerial and below-ground organs while overexpressing the gene brings about a converse effect. These observations are consistent with HWS playing an important role in regulating plant growth and development.