31 resultados para Electric wire, Insulated


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Earth’s global atmospheric electric circuit depends on the upper and lower atmospheric boundaries formed by the ionosphere and the planetary surface. Thunderstorms and electrified rain clouds drive a DC current (∼1 kA) around the circuit, with the current carried by molecular cluster ions; lightning phenomena drive the AC global circuit. The Earth’s near-surface conductivity ranges from 10−7 S m−1 (for poorly conducting rocks) to 10−2 S m−1 (for clay or wet limestone), with a mean value of 3.2 S m−1 for the ocean. Air conductivity inside a thundercloud, and in fair weather regions, depends on location (especially geomagnetic latitude), aerosol pollution and height, and varies from ∼10−14 S m−1 just above the surface to 10−7 S m−1 in the ionosphere at ∼80 km altitude. Ionospheric conductivity is a tensor quantity due to the geomagnetic field, and is determined by parameters such as electron density and electron–neutral particle collision frequency. In the current source regions, point discharge (coronal) currents play an important role below electrified clouds; the solar wind-magnetosphere dynamo and the unipolar dynamo due to the terrestrial rotating dipole moment also apply atmospheric potential differences. Detailed measurements made near the Earth’s surface show that Ohm’s law relates the vertical electric field and current density to air conductivity. Stratospheric balloon measurements launched from Antarctica confirm that the downward current density is ∼1 pA m−2 under fair weather conditions. Fortuitously, a Solar Energetic Particle (SEP) event arrived at Earth during one such balloon flight, changing the observed atmospheric conductivity and electric fields markedly. Recent modelling considers lightning discharge effects on the ionosphere’s electric potential (∼+250 kV with respect to the Earth’s surface) and hence on the fair weather potential gradient (typically ∼130 V m−1 close to the Earth’s surface. We conclude that cloud-to-ground (CG) lightning discharges make only a small contribution to the ionospheric potential, and that sprites (namely, upward lightning above energetic thunderstorms) only affect the global circuit in a miniscule way. We also investigate the effects of mesoscale convective systems on the global circuit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric electricity measurements were made at Lerwick Observatory in the Shetland Isles (60°09′N, 1°08′W) during most of the 20th century. The Potential Gradient (PG) was measured from 1926 to 84 and the air-earth conduction current (Jc) was measured during the final decade of the PG measurements. Daily Jc values (1978–1984) observed at 15 UT are presented here for the first time, with independently-obtained PG measurements used to select valid data. The 15 UT Jc (1978–1984) spans 0.5–9.5 pA/m2, with median 2.5 pA/m2; the columnar resistance at Lerwick is estimated as 70 PΩm2. Smoke measurements confirm the low pollution properties of the site. Analysis of the monthly variation of Lerwick Jc data shows that winter (DJF) Jc is significantly greater than the summer (JJA) Jc by 20%. The Lerwick atmospheric electricity seasonality differs from the global lightning seasonality, but Jc has a similar seasonal phasing to that observed in Nimbostratus clouds globally, suggesting a role for non-thunderstorm rain clouds in the seasonality of the global circuit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the ability of an applied electric field to convert the morphology of a diblock-copolymer thin film from a monolayer of spherical domains embedded in the matrix to cylindrical domains that penetrate through the matrix. As expected, the applied field increases the relative stability of cylindrical domains, while simultaneously reducing the energy barrier that impedes the transition to cylinders. The effectiveness of the field is enhanced by a large dielectric contrast between the two block-copolymer components, particularly when the low-dielectric contrast component forms the matrix. Furthermore, the energy barrier is minimized by selecting sphere-forming diblock copolymers that are as compositionally symmetric as possible. Our calculations, which are the most quantitatively reliable to date, are performed using a numerically precise spectral algorithm based on self-consistent-field theory supplemented with an exact treatment for linear dielectric materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate thin films of cylinder-forming diblock copolymer confined between electrically charged parallel plates, using self-consistent-field theory ( SCFT) combined with an exact treatment for linear dielectric materials. Our study focuses on the competition between the surface interactions, which tend to orient cylinder domains parallel to the plates, and the electric field, which favors a perpendicular orientation. The effect of the electric field on the relative stability of the competing morphologies is demonstrated with equilibrium phase diagrams, calculated with the aid of a weak-field approximation. As hoped, modest electric fields are shown to have a significant stabilizing effect on perpendicular cylinders, particularly for thicker films. Our improved SCFT-based treatment removes most of the approximations implemented by previous approaches, thereby managing to resolve outstanding qualitative inconsistencies among different approximation schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine the stability of lamellar stacks in the presence of an electric field, E-0, applied normal to the lamellae. Calculations are performed with self-consistent field theory (SCFT) supplemented by an exact treatment of the electrostatic energy for linear dielectric materials. The calculations identify a critical electric field, E-0*, beyond which the lamellar stack becomes unstable with respect to undulations. This E-0* rapidly decreases towards zero as the number of lamellae in the stack diverges. Our quantitative predictions for E-0* are consistent with previous experimental measurements by Xu and co-workers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An improved amplifier for atmospheric fine wire resistance thermometry is described. The amplifier uses a low excitation current (50 mu A). This is shown to ensure negligible self-heating of the low mass fine wire resistance sensor, compared with measured nocturnal surface air temperature fluctuations. The system provides sufficient amplification for a +/- 50 degrees C span using a +/- 5 V dynamic range analog-to-digital converter, with a noise level of less than 0.01 degrees C. A Kelvin four-wire connection cancels the effect of long lead resistances: a 50 m length of screened cable connecting the Reading design of fine wire thermometer to the amplifier produced no measurable temperature change at 12 bit resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Earth’s global atmospheric electric circuit depends on the upper and lower atmospheric boundaries formed by the ionosphere and the planetary surface. Thunderstorms and electrified rain clouds drive a DC current (∼1 kA) around the circuit, with the current carried by molecular cluster ions; lightning phenomena drive the AC global circuit. The Earth’s near-surface conductivity ranges from 10−7 S m−1 (for poorly conducting rocks) to 10−2 S m−1 (for clay or wet limestone), with a mean value of 3.2 S m−1 for the ocean. Air conductivity inside a thundercloud, and in fair weather regions, depends on location (especially geomagnetic latitude), aerosol pollution and height, and varies from ∼10−14 S m−1 just above the surface to 10−7 S m−1 in the ionosphere at ∼80 km altitude. Ionospheric conductivity is a tensor quantity due to the geomagnetic field, and is determined by parameters such as electron density and electron–neutral particle collision frequency. In the current source regions, point discharge (coronal) currents play an important role below electrified clouds; the solar wind-magnetosphere dynamo and the unipolar dynamo due to the terrestrial rotating dipole moment also apply atmospheric potential differences. Detailed measurements made near the Earth’s surface show that Ohm’s law relates the vertical electric field and current density to air conductivity. Stratospheric balloon measurements launched from Antarctica confirm that the downward current density is ∼1 pA m−2 under fair weather conditions. Fortuitously, a Solar Energetic Particle (SEP) event arrived at Earth during one such balloon flight, changing the observed atmospheric conductivity and electric fields markedly. Recent modelling considers lightning discharge effects on the ionosphere’s electric potential (∼+250 kV with respect to the Earth’s surface) and hence on the fair weather potential gradient (typically ∼130 V m−1 close to the Earth’s surface. We conclude that cloud-to-ground (CG) lightning discharges make only a small contribution to the ionospheric potential, and that sprites (namely, upward lightning above energetic thunderstorms) only affect the global circuit in a miniscule way. We also investigate the effects of mesoscale convective systems on the global circuit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previously the authors have presented both theoretical and experimental work discussing the operating mechanism of a wire rope held in a tapered socket by means of a cast resin cone. The work reported here extends the investigation to address the question of whether the same socket fabricated with white metal operates in the same manner. To date, previous investigations have compared the operational efficiency of resin and white metal in terms of both strength and/or fatigue endurance. Some other work has analysed the operation of resin sockets or specific cast metal terminations. This paper seeks to draw the results from this work together, and, in addition to a theoretical analysis, presents experimental data obtained from a direct comparison of the operation mechanism for the same sockets filled with resin or white metal. Results show that white metal terminations have a very different distribution of stresses along the length of the socket basket from resin terminations, and a smaller but still significant amount of socket draw. For both types of termination the socket draw develops high frictional gripping forces which can transfer the load from the rope to the socket. The different stress distributions mean that the consequences of termination fabrication defects may not be the same for resin and white metal terminations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oil rig mooring lines have traditionally consisted of chain and wire rope. As production has moved into deeper water it has proved advantageous to incorporate sections of fibre rope into the mooring lines. However, this has highlighted torsional interaction problems that can occur when ropes of different types are joined together. This paper describes a method by which the torsional properties of ropes can be modelled and can then be used to calculate the rotation and torque for two ropes connected in series. The method uses numerical representations of the torsional characteristics of both the ropes, and equates the torque generated in each rope under load to determine the rotation at the connection point. Data from rope torsional characterization tests have been analysed to derive constants used in the numerical model. Constants are presented for: a six-strand wire rope; a torque-balanced fibre rope; and a fibre rope that has been designed to be torque-matched to stranded wire rope. The calculation method has been verified by comparing predicted rotations with measured test values. Worked examples are given for a six-strand wire rope connected, firstly, to a torque-balanced fibre rope that offers little rotational restraint, and, secondly, to a fibre rope whose torsional properties are matched to that of the wire rope.

Relevância:

20.00% 20.00%

Publicador: