18 resultados para Diamond mines and mining
Environmental impact assessment of forest and mining waste interactions in the Tamar River catchment
Resumo:
The reform of previously state-owned and operated industries in many Less Developed Countries (LDCs) provide contrary experiences to those in the developed world, which have generally had more equitable distributional impacts. The economic reform policies proposed by the so-called 'Washington Consensus' state that privatisation provides governments with opportunities to raise revenues through the sale of under-performing and indebted state industries, thereby reducing significant fiscal burdens, and, at the same time, facilitating influxes of foreign capital, skills and technology, with the aim of improving operations and a "trickle-down" of benefits. However, experiences in many LDCs over the last 15-20 years suggest that reform has not solved the problem of chronic public-sector debt, and that poverty and socio-economic inequalities have increased during this period of 'neo-liberal' economics. This paper does not seek to challenge the policies themselves, but rather argues that the context in which reform has often taken place is of fundamental significance. The industry-centric policy advice provided by the IFIs typically causes a 'lock-in' of inequitably distributed 'efficiency gains', providing minimal, if any, benefits to impoverished groups. These arguments are made using case study analysis from the electricity and mining sectors.
Resumo:
OBJECTIVES: The prediction of protein structure and the precise understanding of protein folding and unfolding processes remains one of the greatest challenges in structural biology and bioinformatics. Computer simulations based on molecular dynamics (MD) are at the forefront of the effort to gain a deeper understanding of these complex processes. Currently, these MD simulations are usually on the order of tens of nanoseconds, generate a large amount of conformational data and are computationally expensive. More and more groups run such simulations and generate a myriad of data, which raises new challenges in managing and analyzing these data. Because the vast range of proteins researchers want to study and simulate, the computational effort needed to generate data, the large data volumes involved, and the different types of analyses scientists need to perform, it is desirable to provide a public repository allowing researchers to pool and share protein unfolding data. METHODS: To adequately organize, manage, and analyze the data generated by unfolding simulation studies, we designed a data warehouse system that is embedded in a grid environment to facilitate the seamless sharing of available computer resources and thus enable many groups to share complex molecular dynamics simulations on a more regular basis. RESULTS: To gain insight into the conformational fluctuations and stability of the monomeric forms of the amyloidogenic protein transthyretin (TTR), molecular dynamics unfolding simulations of the monomer of human TTR have been conducted. Trajectory data and meta-data of the wild-type (WT) protein and the highly amyloidogenic variant L55P-TTR represent the test case for the data warehouse. CONCLUSIONS: Web and grid services, especially pre-defined data mining services that can run on or 'near' the data repository of the data warehouse, are likely to play a pivotal role in the analysis of molecular dynamics unfolding data.
Resumo:
The paper investigates how energy-intensive industries respond to the recent government-led carbon emission schemes through the content analysis of 306 annual and standalone reports of 25 UK listed companies from 2004 to 2012. This period of reporting captures the trend and development of corporate disclosures on carbon emissions after the launch of EU Emissions Trading Schemes (ETS) and Climate Change Act (CCA) 2008. It is found that in corresponding to strategic legitimacy theory, there is an increase in both the quality and quantity of carbon disclosures as a response to these initiatives. However, the change is gradual, which reflects in the achievement of peak disclosure period two years after the launch. It indicates that the new legislations have a lasting impact on the discourses rather than an immediate legitimacy threat from the perspective of institutional legitimacy theory. The results also show that carbon disclosures are an institutionalised practice as companies in the same industries and/or with same carbon trading account status appear to imitate and adopt the industry’s ‘best practice’ disclosure strategy to maintain legitimacy. The trend analysis suggests that the overall disclosure practice is still in its infant stage, especially in the reporting of quantitative and monetary items. The paper contributes to the social and environmental accounting literature by adopting both strategic and institutional view of legitimacy, which explains why carbon disclosures evolve in a specific way to meet the expectation of various stakeholders.
Resumo:
Trace elements may present an environmental hazard in the vicinity of mining and smelting activities. However, the factors controlling their distribution and transfer within the soil and vegetation systems are not always well defined. Total concentrations of up to 15,195 mg center dot kg (-1) As, 6,690 mg center dot kg(-1) Cu, 24,820 mg center dot kg(-1) Pb and 9,810 mg center dot kg(-1) Zn in soils, and 62 mg center dot kg(-1) As, 1,765 mg center dot kg(-1) Cu, 280 mg center dot kg(-1) Pb and 3,460 mg center dot kg (-1) Zn in vegetation were measured. However, unusually for smelters and mines of a similar size, the elevated trace element concentrations in soils were found to be restricted to the immediate vicinity of the mines and smelters (maximum 2-3 km). Parent material, prevailing wind direction, and soil physical and chemical characteristics were found to correlate poorly with the restricted trace element distributions in soils. Hypotheses are given for this unusual distribution: (1) the contaminated soils were removed by erosion or (2) mines and smelters released large heavy particles that could not have been transported long distances. Analyses of the accumulation of trace elements in vegetation (median ratios: As 0.06, Cu 0.19, Pb 0.54 and Zn 1.07) and the percentage of total trace elements being DTPA extractable in soils (median percentages: As 0.06%, Cu 15%, Pb 7% and Zn 4%) indicated higher relative trace element mobility in soils with low total concentrations than in soils with elevated concentrations.
Resumo:
Trace elements may present an environmental hazard in the vicinity of mining and smelting activities. However, the factors controlling trace element distribution in soils around ancient and modem mining and smelting areas are not always clear. Tharsis, Riotinto and Huelva are located in the Iberian Pyrite Belt in SW Spain. Tharsis and Riotinto mines have been exploited since 2500 B.C., with intensive smelting taking place. Huelva, established in 1970 and using the Flash Furnace Outokumpu process, is currently one of the largest smelter in the world. Pyrite and chalcopyrite ore have been intensively smelted for Cu. However, unusually for smelters and mines of a similar size, the elevated trace element concentrations in soils were found to be restricted to the immediate vicinity of the mines and smelters, being found up to a maximum of 2 kin from the mines and smelters at Tharsis, Riotinto and Huelva. Trace element partitioning (over 2/3 of trace elements found in the residual immobile fraction of soils at Tharsis) and soil particles examination by SEM-EDX showed that trace elements were not adsorbed onto soil particles, but were included within the matrix of large trace element-rich Fe silicate slag particles (i.e. 1 min circle divide at least 1 wt.% As, Cu and Zn, and 2 wt.% Pb). Slag particle large size (I mm 0) was found to control the geographically restricted trace element distribution in soils at Tharsis, Riotinto and Huelva, since large heavy particles could not have been transported long distances. Distribution and partitioning indicated that impacts to the environment as a result of mining and smelting should remain minimal in the region. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Safety is an element of extreme priority in mining operations, currently many traditional mining countries are investing in the implementation of wireless sensors capable of detecting risk factors; through early warning signs to prevent accidents and significant economic losses. The objective of this research is to contribute to the implementation of sensors for continuous monitoring inside underground mines providing technical parameters for the design of sensor networks applied in underground coal mines. The application of sensors capable of measuring in real time variables of interest, promises to be of great impact on safety for mining industry. The relationship between the geological conditions and mining method design, establish how to implement a system of continuous monitoring. In this paper, the main causes of accidents for underground coal mines are established based on existing worldwide reports. Variables (temperature, gas, structural faults, fires) that can be related to the most frequent causes of disaster and its relevant measuring range are then presented, also the advantages, management and mining operations are discussed, including the analyzed of applying these systems in terms of Benefit, Opportunity, Cost and Risk. The publication focuses on coal mining, based on the proportion of these events a year worldwide, where a significant number of workers are seriously injured or killed. Finally, a dynamic assessment of safety at underground mines it is proposed, this approach offers a contribution to design personalized monitoring networks, the experience developed in coal mines provides a tool that facilitates the application development of technology within underground coal mines.
Resumo:
Aircraft Maintenance, Repair and Overhaul (MRO) feedback commonly includes an engineer’s complex text-based inspection report. Capturing and normalizing the content of these textual descriptions is vital to cost and quality benchmarking, and provides information to facilitate continuous improvement of MRO process and analytics. As data analysis and mining tools requires highly normalized data, raw textual data is inadequate. This paper offers a textual-mining solution to efficiently analyse bulk textual feedback data. Despite replacement of the same parts and/or sub-parts, the actual service cost for the same repair is often distinctly different from similar previously jobs. Regular expression algorithms were incorporated with an aircraft MRO glossary dictionary in order to help provide additional information concerning the reason for cost variation. Professional terms and conventions were included within the dictionary to avoid ambiguity and improve the outcome of the result. Testing results show that most descriptive inspection reports can be appropriately interpreted, allowing extraction of highly normalized data. This additional normalized data strongly supports data analysis and data mining, whilst also increasing the accuracy of future quotation costing. This solution has been effectively used by a large aircraft MRO agency with positive results.
Resumo:
This article examines Corporate Social Responsibility (CSR) and mining community development, sustainability and viability. These issues are considered focussing on current and former company-owned mining towns in Namibia. Historically company towns have been a feature of mining activity in Namibia. However, the fate of such towns upon mine closure has been and remains controversial. Declining former mining communities and even ghost mining towns can be found across the country. This article draws upon research undertaken in Namibia and considers these issues with reference to three case study communities. This article examines the complexities which surround decision-making about these communities, and the challenges faced in efforts to encourage their sustainability after mining. In this article, mine company engagements through CSR with the development, sustainability and viability of such communities are also critically discussed. The role, responsibilities, and actions of the state in relation to these communities are furthermore reflected upon. Finally, ways forward for these communities are considered.
Resumo:
Botswana has a basic need to explore its energy concept, this being its energy sources, generation and percentage of the population with access to electricity. At present, Botswana generates electricity from coal, which supplies about 29% (on average) of the country’s demand. The other 71% is imported mainly from South Africa (Eskom). Consequently, the dependence of Botswana on imports posses threats to the security of its energy supply. As a result, there is the need to understand the bases for a possible generation expansion that would substantiate existing documentation. In view of this need, this study investigates the existing energy sources as well as energy consumption and production levels in Botswana. The study would be further developed by making projections of the energy demand up until the year 2020. The key techniques that were used include; literature review, questionnaire survey and an empirical study. The results presented indicated that, current dependable operation capacity (i.e. 100MW) should be increased to 2,595 MW or more assuming 85% plant efficiency. This would then be able to meet the growing demand for energy use. In addition, the installed capacity would be able to support commercial and mining activities for the growth of the economy.
Resumo:
Human brain imaging techniques, such as Magnetic Resonance Imaging (MRI) or Diffusion Tensor Imaging (DTI), have been established as scientific and diagnostic tools and their adoption is growing in popularity. Statistical methods, machine learning and data mining algorithms have successfully been adopted to extract predictive and descriptive models from neuroimage data. However, the knowledge discovery process typically requires also the adoption of pre-processing, post-processing and visualisation techniques in complex data workflows. Currently, a main problem for the integrated preprocessing and mining of MRI data is the lack of comprehensive platforms able to avoid the manual invocation of preprocessing and mining tools, that yields to an error-prone and inefficient process. In this work we present K-Surfer, a novel plug-in of the Konstanz Information Miner (KNIME) workbench, that automatizes the preprocessing of brain images and leverages the mining capabilities of KNIME in an integrated way. K-Surfer supports the importing, filtering, merging and pre-processing of neuroimage data from FreeSurfer, a tool for human brain MRI feature extraction and interpretation. K-Surfer automatizes the steps for importing FreeSurfer data, reducing time costs, eliminating human errors and enabling the design of complex analytics workflow for neuroimage data by leveraging the rich functionalities available in the KNIME workbench.
Resumo:
This paper examines the life cycle GHG emissions from existing UK pulverized coal power plants. The life cycle of the electricity Generation plant includes construction, operation and decommissioning. The operation phase is extended to upstream and downstream processes. Upstream processes include the mining and transport of coal including methane leakage and the production and transport of limestone and ammonia, which are necessary for flue gas clean up. Downstream processes, on the other hand, include waste disposal and the recovery of land used for surface mining. The methodology used is material based process analysis that allows calculation of the total emissions for each process involved. A simple model for predicting the energy and material requirements of the power plant is developed. Preliminary calculations reveal that for a typical UK coal fired plant, the life cycle emissions amount to 990 g CO2-e/kWh of electricity generated, which compares well with previous UK studies. The majority of these emissions result from direct fuel combustion (882 g/kWh 89%) with methane leakage from mining operations accounting for 60% of indirect emissions. In total, mining operations (including methane leakage) account for 67.4% of indirect emissions, while limestone and other material production and transport account for 31.5%. The methodology developed is also applied to a typical IGCC power plant. It is found that IGCC life cycle emissions are 15% less than those from PC power plants. Furthermore, upon investigating the influence of power plant parameters on life cycle emissions, it is determined that, while the effect of changing the load factor is negligible, increasing efficiency from 35% to 38% can reduce emissions by 7.6%. The current study is funded by the UK National Environment Research Council (NERC) and is undertaken as part of the UK Carbon Capture and Storage Consortium (UKCCSC). Future work will investigate the life cycle emissions from other power generation technologies with and without carbon capture and storage. The current paper reveals that it might be possible that, when CCS is employed. the emissions during generation decrease to a level where the emissions from upstream processes (i.e. coal production and transport) become dominant, and so, the life cycle efficiency of the CCS system can be significantly reduced. The location of coal, coal composition and mining method are important in determining the overall impacts. In addition to studying the net emissions from CCS systems, future work will also investigate the feasibility and technoeconomics of these systems as a means of carbon abatement.
Resumo:
Metabolic stable isotope labeling is increasingly employed for accurate protein (and metabolite) quantitation using mass spectrometry (MS). It provides sample-specific isotopologues that can be used to facilitate comparative analysis of two or more samples. Stable Isotope Labeling by Amino acids in Cell culture (SILAC) has been used for almost a decade in proteomic research and analytical software solutions have been established that provide an easy and integrated workflow for elucidating sample abundance ratios for most MS data formats. While SILAC is a discrete labeling method using specific amino acids, global metabolic stable isotope labeling using isotopes such as (15)N labels the entire element content of the sample, i.e. for (15)N the entire peptide backbone in addition to all nitrogen-containing side chains. Although global metabolic labeling can deliver advantages with regard to isotope incorporation and costs, the requirements for data analysis are more demanding because, for instance for polypeptides, the mass difference introduced by the label depends on the amino acid composition. Consequently, there has been less progress on the automation of the data processing and mining steps for this type of protein quantitation. Here, we present a new integrated software solution for the quantitative analysis of protein expression in differential samples and show the benefits of high-resolution MS data in quantitative proteomic analyses.