41 resultados para Crystalline solids
Resumo:
This study is concerned with a series of acrylate based side-chain liquid crystalline (LC) polymers. Previous studies have shown that these LC polymers have a preference for parallel or perpendicular alignment with respect to the polymer chain which depends on the length of the coupling chain joining the mesogenic unit to the polymer backbone. On the other hand, the dielectric relaxation of these side-chain LC polymers shows a strong relaxation associated to the mesogenic unit dynamics. For samples with parallel alignment, it was found that the dielectric relaxation of the nematic is weaker and broader than the relaxation of the isotropic. By contrast, for samples with perpendicular alignment, the isotropic to nematic transition reduces the broadening the relaxation and increases the relaxation strength. These two features are more evident for samples with short coupling units for which the dielectric relaxation observed appears to be strongly coupled with the backbone dynamics.
Resumo:
Reactions in (molecular) organic crystalline solids have been shown to be important for exerting control that is unattainable over chemical transformations in solution. Such control has also been achieved for reactions within metal– organic cages. In these examples, the reactants are already in place within the crystals following the original crystal growth. The post-synthetic modification of metal–organic frameworks (MOFs and indeed reactions and catalysis within MOFs have been recently demonstrated; in these cases the reactants enter the crystals through permanent channels. Another growing area of interest within molecular solid-state chemistry is synthesis by mechanical co-grinding of solid reactants—often referred to as mechanochemistry. Finally, in a small number of reported examples, molecules also have been shown to enter nonporous crystals directly from the gas or vapor phase, but in only a few of these examples does a change in covalent bonding result, which indicates that a reaction occurs within the nonporous crystals. It is this latter type of highly uncommon reaction that is the focus of the present study.
Resumo:
Reactions of [Fe3(CO)12] with diaryltin species SnR2(R1= 2,4,6-triisopropylphenyl, R2= 2,6-diethylphenyl, R3= pentamethylphenyl) and with Sn[CH(PPh2)2]2 have been investigated. The tin reagents SnR2(R = R1 or R2) reacted under mild conditions to give in moderate yields the trinuclear species [Fe2(CO)8(µ-SnR12)]1 or [Fe2(CO)8(µ-SnR22)]2, as orange-red crystalline solids, which decompose in air on prolonged exposure. The compound [Fe2(CO)8(µ-SnR42)]3(R4= 2,4,6-triphenylphenyl) can be similarly obtained. Prolonged treatment of the carbonyl with the novel tin reagent SnR32, by contrast, afforded the known compound spiro-[(OC)8Fe2SnFe2(CO)8]4 for which data are briefly reported. Reactions with tin or lead reagents M[CH(PPh2)2]2(M = Sn or Pb) afforded [Fe2(CO)6(µ-CO)(µ-dppm)][dppm = 1,2-bis(diphenylphosphino)methane] rapidly and almost quantitatively. Full crystal and molecular structural data are reported for [Fe2(CO)8(µ-SnR12)] and [Fe2(CO)8(µ-SnR22)]. Mössbauer data are also presented for compounds 1–3, and interpreted in terms of the structural data for these and other systems.
Resumo:
Gallaborane (GaBH6, 1), synthesized by the metathesis of LiBH4 with [H2GaCl]n at ca. 250 K, has been characterized by chemical analysis and by its IR and 1H and 11B NMR spectra. The IR spectrum of the vapor at low pressure implies the presence of only one species, viz. H2Ga(μ-H)2BH2, with a diborane-like structure conforming to C2v symmetry. The structure of this molecule has been determined by gas-phase electron diffraction (GED) measurements afforced by the results of ab initio molecular orbital calculations. Hence the principal distances (rα in Å) and angles ( α in deg) are as follows: r(Ga•••B), 2.197(3); r(Ga−Ht), 1.555(6); r(Ga−Hb), 1.800(6); r(B−Ht), 1.189(7); r(B−Hb), 1.286(7); Hb−Ga−Hb, 71.6(4); and Hb−B−Hb, 110.0(5) (t = terminal, b = bridging). Aggregation of the molecules occurs in the condensed phases. X-ray crystallographic studies of a single crystal at 110 K reveal a polymeric network with helical chains made up of alternating pseudotetrahedral GaH4 and BH4 units linked through single hydrogen bridges; the average Ga•••B distance is now 2.473(7) Å. The compound decomposes in the condensed phases at temperatures exceeding ca. 240 K with the formation of elemental Ga and H2 and B2H6. The reactions with NH3, Me3N, and Me3P are also described.
Resumo:
Thermal or chemical treatment of crystalline 4,4-bipyridinium salts of [MCl4]2- (M=Co, Zn, Fe, or Pt) leads to HCl loss and formation of coordination network solids [{MCl2(4,4-bipy)}n]. For M=Co, Zn, and Fe, these solids can also be prepared by mechanochemical means. Their exposure to HCl vapor or the mechanochemical reaction of metal dichlorides with [4,4-H2bipy]Cl2 gives [4,4-H2bipy]2+ salts of [CoCl4]2-, [ZnCl4]2-, and, for the first time, [FeCl4]2-.
Resumo:
We study the structure and shear flow behavior of a side-on liquid crystalline triblock copolymer, named PBA-b-PA444-b-PBA (PBA is poly(butyl acrylate) and PA444 is a poly(acrylate) with a nematic liquid crystal side-on mesogen), in the self-assembled lamellar phase and in the disordered phase. Simultaneous oscillatory shear and small-angle X-ray scattering experiments show that shearing PBA-b-PA444-b-PBA at high frequency and strain amplitudes leads to the alignment of the lamellae with normals perpendicular to the shear direction and to the velocity gradient direction, i.e., in the perpendicular orientation. The order-to-disorder transition temperature (T-ODT) is independent of the applied strain, in contrast to results reported in the literature for coil-coil diblock copolymers, which show an increase in T-ODT with shear rate. It is possible that in our system, T-ODT does not depend on the applied strain because the fluctuations are weaker than those present in coil-coil diblock copolymer systems.
Resumo:
Crystalline aromatic poly(ether ketone)s Such as PEEK and PEK may be cleanly and reversibly derivatized by dithioketalization of the carbonyl groups With 1,2-ethanedithiol or 1,3-propanedithiol under strong acid conditions. The resulting 1,3-dithiolane and 1,3-dithiane polymers are hydrolytically stable, amorphous, and readily soluble in organic solvents such as chloroform and THF and are thus (unlike their parent polymers) easily characterized by gel permeation chromatography (GPC). GPC analysis of a range of derivatized PEEK samples using light-scattering detection revealed, in some instances, a bimodal molecular weight distribution with a small but potentially significant (and previously undetected) very high-molecular-weight fraction.
Resumo:
The family of semi-crystalline, aromatic, high-temperature thermoplastics known as poly(ether-ketone)s are insoluble in conventional organic solvents, but undergo completely general and quantitatively reversible reactions with alkanedithiols in strong acid media, to give soluble poly(dithioacetal)s, which are readily characterisable by GPC and light scattering techniques.