48 resultados para Cropping system design


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer vision applications generally split their problem into multiple simpler tasks. Likewise research often combines algorithms into systems for evaluation purposes. Frameworks for modular vision provide interfaces and mechanisms for algorithm combination and network transparency. However, these don’t provide interfaces efficiently utilising the slow memory in modern PCs. We investigate quantitatively how system performance varies with different patterns of memory usage by the framework for an example vision system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the uniformization of a system of afine recurrence equations. This transformation is used in the design (or compilation) of highly parallel embedded systems (VLSI systolic arrays, signal processing filters, etc.). In this paper, we present and implement an automatic system to achieve uniformization of systems of afine recurrence equations. We unify the results from many earlier papers, develop some theoretical extensions, and then propose effective uniformization algorithms. Our results can be used in any high level synthesis tool based on polyhedral representation of nested loop computations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Robustness in multi-variable control system design requires that the solution to the design problem be insensitive to perturbations in the system data. In this paper we discuss measures of robustness for generalized state-space, or descriptor, systems and describe algorithmic techniques for optimizing robustness for various applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complementarity in acquisition of nitrogen (N) from soil and N-2-fixation within pea and barley intercrops was studied in organic field experiments across Western Europe (Denmark, United Kingdom, France, Germany and Italy). Spring pea and barley were sown either as sole crops, at the recommended plant density (P100 and B100, respectively) or in replacement (P50B50) or additive (P100B50) intercropping designs, in each of three cropping seasons (2003-2005). Irrespective of site and intercrop design, Land Equivalent Ratios (LER) between 1.4 at flowering and 1.3 at maturity showed that total N recovery was greater in the pea-barley intercrops than in the sole Crops Suggesting a high degree of complementarity over a wide range of growing conditions. Complementarity was partly attributed to greater soil mineral N acquisition by barley, forcing pea to rely more on N-2-fixation. At all sites the proportion of total aboveground pea N that was derived from N-2-fixation was greater when intercropped with barley than when grown as a sole crop. No consistent differences were found between the two intercropping designs. Simultaneously, the accumulation Of Phosphorous (P), potassium (K) and sulphur (S) in Danish and German experiments was 20% higher in the intercrop (P50B50) than in the respective sole crops, possibly influencing general crop yields and thereby competitive ability for other resources. Comparing all sites and seasons, the benefits of organic pea-barley intercropping for N acquisition were highly resilient. It is concluded that pea-barley intercropping is a relevant cropping strategy to adopt when trying to optimize N-2-fixation inputs to the cropping system. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of expert system techniques in power distribution system design is examined. The selection and siting of equipment on overhead line networks is chosen for investigation as the use of equipment such as auto-reclosers, etc., represents a substantial investment and has a significant effect on the reliability of the system. Through past experience with both equipment and network operations, most decisions in selection and siting of this equipment are made intuitively, following certain general guidelines or rules of thumb. This heuristic nature of the problem lends itself to solution using an expert system approach. A prototype has been developed and is currently under evaluation in the industry. Results so far have demonstrated both the feasibility and benefits of the expert system as a design aid.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Soils represent a large carbon pool, approximately 1500 Gt, which is equivalent to almost three times the quantity stored in terrestrial biomass and twice the amount stored in the atmosphere. Any modification of land use or land management can induce variations in soil carbon stocks, even in agricultural systems that are perceived to be in a steady state. Tillage practices often induce soil aerobic conditions that are favourable to microbial activity and may lead to a degradation of soil structure. As a result, mineralisation of soil organic matter increases in the long term. The adoption of no-tillage systems and the maintenance of a permanent vegetation cover using Direct seeding Mulch-based Cropping system or DMC, may increase carbon levels in the topsoil. In Brazil, no-tillage practices (mainly DMC), were introduced approximately 30 years ago in the south in the Parana state, primarily as a means of reducing erosion. Subsequently, research has begun to study the management of the crop waste products and their effects on soil fertility, either in terms of phosphorus management, as a means of controlling soil acidity, or determining how manures can be applied in a more localised manner. The spread of no-till in Brazil has involved a large amount of extension work. The area under no-tillage is still increasing in the centre and north of the country and currently occupies ca. 20 million hectares, covering a diversity of environmental conditions, cropping systems and management practices. Most studies of Brazilian soils give rates of carbon storage in the top 40 cm of the soil of 0.4 to 1.7 t C ha(-1) per year, with the highest rates in the Cerrado region. However, caution must be taken when analysing DMC systems in terms of carbon sequestration. Comparisons should include changes in trace gas fluxes and should not be limited to a consideration of carbon storage in the soil alone if the full implications for global warming are to be assessed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bode's method for obtaining 'maximum obtainable feedback' is a good example of a nontrivial feedback system design technique, but it is largely overlooked. This paper shows how the associated mathematics can be simplified and linear elements used in its implementation, so as to make it accessible for teaching to undergraduates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A common problem in many data based modelling algorithms such as associative memory networks is the problem of the curse of dimensionality. In this paper, a new two-stage neurofuzzy system design and construction algorithm (NeuDeC) for nonlinear dynamical processes is introduced to effectively tackle this problem. A new simple preprocessing method is initially derived and applied to reduce the rule base, followed by a fine model detection process based on the reduced rule set by using forward orthogonal least squares model structure detection. In both stages, new A-optimality experimental design-based criteria we used. In the preprocessing stage, a lower bound of the A-optimality design criterion is derived and applied as a subset selection metric, but in the later stage, the A-optimality design criterion is incorporated into a new composite cost function that minimises model prediction error as well as penalises the model parameter variance. The utilisation of NeuDeC leads to unbiased model parameters with low parameter variance and the additional benefit of a parsimonious model structure. Numerical examples are included to demonstrate the effectiveness of this new modelling approach for high dimensional inputs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Research into design methodology is one of the most challenging issues in the field of persuasive technology. However, the introduction of the Persuasive Systems Design model, and the consideration of the 3-Dimensional Re-lationship between Attitude and Behavior, offer to make persuasive technolo-gies more practically viable. In this paper we demonstrate how the 3-Dimensional Relationship between Attitude and Behavior guides the analysis of the persuasion context in the Persuasive System Design model. As a result, we propose a modification of the persuasion context and assert that the technology should be analyzed as part of strategy instead of event.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Common approaches to the simulation of borehole heat exchangers (BHEs) assume heat transfer in circulating fluid and grout to be in a quasi-steady state and ignore fluctuations in fluid temperature due to transport of the fluid around the loop. However, in domestic ground source heat pump (GSHP) systems, the heat pump and circulating pumps switch on and off during a given hour; therefore, the effect of the thermal mass of the circulating fluid and the dynamics of fluid transport through the loop has important implications for system design. This may also be important in commercial systems that are used intermittently. This article presents transient simulation of a domestic GSHP system with a single BHE using a dynamic three-dimensional (3D) numerical BHE model. The results show that delayed response associated with the transit of fluid along the pipe loop is of some significance in moderating swings in temperature during heat pump operation. In addition, when 3D effects are considered, a lower heat transfer rate is predicted during steady operations. These effects could be important when considering heat exchanger design and system control. The results will be used to develop refined two-dimensional models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents the notion of Context-based Activity Design (CoBAD) that represents context with its dynamic changes and normative activities in an interactive system design. The development of CoBAD requires an appropriate context ontology model and inference mechanisms. The incorporation of norms and information field theory into Context State Transition Model, and the implementation of new conflict resolution strategies based on the specific situation are discussed. A demonstration of CoBAD using a human agent scenario in a smart home is also presented. Finally, a method of treating conflicting norms in multiple information fields is proposed.