60 resultados para Cosmic physics.
Resumo:
Cosmic rays produce molecular cluster ions as they pass through the lower atmosphere. Neutral molecular clusters such as dimers and complexes are expected to make a small contribution to the radiative balance, but atmospheric absorption by charged clusters has not hitherto been observed. In an atmospheric experiment, a narrowband thermopile filter radiometer centred on 9.15 {\mu}m, an absorption band previously associated with infra-red absorption of molecular cluster ions, was used to monitor changes following events identified by a cosmic ray telescope sensitive to high-energy (>400 MeV) particles, principally muons. The average change in longwave radiation in this absorption band due to molecular cluster ions is 7 mWm sup{-2}. The integrated atmospheric energy density for each event is 2 Jm sup{-2}, representing an amplification factor of 10 sup{12} compared to the estimated energy density of a typical air shower. This absorption is expected to occur continuously and globally, but calculations suggest that it has only a small effect on climate.
Resumo:
The ability to predict times of greater galactic cosmic ray (GCR) fluxes is important for reducing the hazards caused by these particles to satellite communications, aviation, or astronauts. The 11-year solar-cycle variation in cosmic rays is highly correlated with the strength of the heliospheric magnetic field. Differences in GCR flux during alternate solar cycles yield a 22-year cycle, known as the Hale Cycle, which is thought to be due to different particle drift patterns when the northern solar pole has predominantly positive (denoted as qA>0 cycle) or negative (qA<0) polarities. This results in the onset of the peak cosmic-ray flux at Earth occurring earlier during qA>0 cycles than for qA<0 cycles, which in turn causes the peak to be more dome-shaped for qA>0 and more sharply peaked for qA<0. In this study, we demonstrate that properties of the large-scale heliospheric magnetic field are different during the declining phase of the qA<0 and qA>0 solar cycles, when the difference in GCR flux is most apparent. This suggests that particle drifts may not be the sole mechanism responsible for the Hale Cycle in GCR flux at Earth. However, we also demonstrate that these polarity-dependent heliospheric differences are evident during the space-age but are much less clear in earlier data: using geomagnetic reconstructions, we show that for the period of 1905 - 1965, alternate polarities do not give as significant a difference during the declining phase of the solar cycle. Thus we suggest that the 22-year cycle in cosmic-ray flux is at least partly the result of direct modulation by the heliospheric magnetic field and that this effect may be primarily limited to the grand solar maximum of the space-age.
Resumo:
Galactic Cosmic Rays are one of the major sources of ion production in the troposphere and stratosphere. Recent studies have shown that ions form electrically charged clusters which may grow to become cloud droplets. Aerosol particles charge by the attachment of ions and electrons. The collision efficiency between a particle and a water droplet increases, if the particle is electrically charged, and thus aerosol-cloud interactions can be enhanced. Because these microphysical processes may change radiative properties of cloud and impact Earth's climate it is important to evaluate these processes' quantitative effects. Five different models developed independently have been coupled to investigate this. The first model estimates cloud height from dew point temperature and the temperature profile. The second model simulates the cloud droplet growth from aerosol particles using the cloud parcel concept. In the third model, the scavenging rate of the aerosol particles is calculated using the collision efficiency between charged particles and droplets. The fourth model calculates electric field and charge distribution on water droplets and aerosols within cloud. The fifth model simulates the global electric circuit (GEC), which computes the conductivity and ionic concentration in the atmosphere in altitude range 0–45 km. The first four models are initially coupled to calculate the height of cloud, boundary condition of cloud, followed by growth of droplets, charge distribution calculation on aerosols and cloud droplets and finally scavenging. These models are incorporated with the GEC model. The simulations are verified with experimental data of charged aerosol for various altitudes. Our calculations showed an effect of aerosol charging on the CCN concentration within the cloud, due to charging of aerosols increase the scavenging of particles in the size range 0.1 µm to 1 µm.
Resumo:
Galactic cosmic rays (GCRs) are modulated by the heliospheric magnetic field (HMF) both over decadal time scales (due to long-term, global HMF variations), and over time scales of a few hours (associated with solar wind structures such as coronal mass ejections or the heliospheric current sheet, HCS). Due to the close association between the HCS, the streamer belt, and the band of slow solar wind, HCS crossings are often associated with corotating interaction regions where fast solar wind catches up and compresses slow solar wind ahead of it. However, not all HCS crossings are associated with strong compressions. In this study we categorize HCS crossings in two ways: Firstly, using the change in magnetic polarity, as either away-to-toward (AT) or toward-to-away (TA) magnetic field directions relative to the Sun and, secondly, using the strength of the associated solar wind compression, determined from the observed plasma density enhancement. For each category, we use superposed epoch analyses to show differences in both solar wind parameters and GCR flux inferred from neutron monitors. For strong-compression HCS crossings, we observe a peak in neutron counts preceding the HCS crossing, followed by a large drop after the crossing, attributable to the so-called ‘snow-plough’ effect. For weak-compression HCS crossings, where magnetic field polarity effects are more readily observable, we instead observe that the neutron counts have a tendency to peak in the away magnetic field sector. By splitting the data by the dominant polarity at each solar polar region, we find that the increase in GCR flux prior to the HCS crossing is primarily from strong compressions in cycles with negative north polar fields due to GCR drift effects. Finally, we report on unexpected differences in GCR behavior between TA weak compressions during opposing polarity cycles.
Resumo:
The response of galactic cosmic rays (GCRs) to an isolated enhancement of the non-axisymmetric component of the solar open magnetic field between June and November 1996 is investigated by using a combination of solar observations and numerical modelling of the interplanetary medium. The most obvious coronal hole visible from Earth at the time had little shielding effect on the flux of GCRs, as measured at Earth by neutron monitors. It is found that the evolution of the corotating interaction regions generated by a less obvious coronal hole was the principal controlling factor. Moreover, we demonstrate the imprint of the latitudinal and longitudinal evolution of that coronal hole on the variation of GCRs. The latitudinal extent of this solar minimum corotating interaction region had a determining, but local, shielding effect on GCRs, confirming previous modelling results.
Resumo:
Understanding effects of ionisation in the lower atmosphere is a new interdisciplinary area, crossing the traditionally distinct scientific boundaries between astro-particle and atmospheric physics and also requiring understanding of both heliospheric and magnetospheric influences on cosmic rays. Following the paper of Erlykin et al. (2014) we develop further the interpretation of our observed changes in long-wave (LW) radiation, Aplin and Lockwood (2013) by taking account of both cosmic ray ionisation yields and atmospheric radiative transfer. To demonstrate this, we show that the thermal structure of the whole atmosphere needs to be considered along with the vertical profile of ionisation. Allowing for, in particular, ionisation by all components of a cosmic ray shower and not just by the muons, reveals that the effect we have detected is certainly not inconsistent with laboratory observations of the LW absorption cross section. The analysis presented here, although very different from that of Erlykin et al., does come to the same conclusion that the events detected by AL were not caused by individual cosmic ray primaries – not because it is impossible on energetic grounds, but because events of the required energy are too infrequent for the 12 h_1 rate at which they were seen by the AL experiment. The present paper numerically models the effect of three different scenario changes to the primary GCR spectrum which all reproduce the required magnitude of the effect observed by AL. However, they cannot solely explain the observed delay in the peak effect which, if confirmed, would appear to open up a whole new and interesting area in the study of water oligomers and their effects on LW radiation. We argue that a technical artefact in the AL experiment is highly unlikely and that our initial observations merit both a wide-ranging follow-up experiment and more rigorous, self-consistent, three-dimensional radiative transfer modelling
Resumo:
Finite computing resources limit the spatial resolution of state-of-the-art global climate simulations to hundreds of kilometres. In neither the atmosphere nor the ocean are small-scale processes such as convection, clouds and ocean eddies properly represented. Climate simulations are known to depend, sometimes quite strongly, on the resulting bulk-formula representation of unresolved processes. Stochastic physics schemes within weather and climate models have the potential to represent the dynamical effects of unresolved scales in ways which conventional bulk-formula representations are incapable of so doing. The application of stochastic physics to climate modelling is a rapidly advancing, important and innovative topic. The latest research findings are gathered together in the Theme Issue for which this paper serves as the introduction.
Resumo:
Aerosols from anthropogenic and natural sources have been recognized as having an important impact on the climate system. However, the small size of aerosol particles (ranging from 0.01 to more than 10 μm in diameter) and their influence on solar and terrestrial radiation makes them difficult to represent within the coarse resolution of general circulation models (GCMs) such that small-scale processes, for example, sulfate formation and conversion, need parameterizing. It is the parameterization of emissions, conversion, and deposition and the radiative effects of aerosol particles that causes uncertainty in their representation within GCMs. The aim of this study was to perturb aspects of a sulfur cycle scheme used within a GCM to represent the climatological impacts of sulfate aerosol derived from natural and anthropogenic sulfur sources. It was found that perturbing volcanic SO2 emissions and the scavenging rate of SO2 by precipitation had the largest influence on the sulfate burden. When these parameters were perturbed the sulfate burden ranged from 0.73 to 1.17 TgS for 2050 sulfur emissions (A2 Special Report on Emissions Scenarios (SRES)), comparable with the range in sulfate burden across all the Intergovernmental Panel on Climate Change SRESs. Thus, the results here suggest that the range in sulfate burden due to model uncertainty is comparable with scenario uncertainty. Despite the large range in sulfate burden there was little influence on the climate sensitivity, which had a range of less than 0.5 K across the ensemble. We hypothesize that this small effect was partly associated with high sulfate loadings in the control phase of the experiment.
Resumo:
The atmosphere's fair weather electric field is a permanent feature, arising from the combination of distant thunderstorms, Earth's conducting surface, a charged ionosphere and cosmic ray ionization. Despite its ubiquity, no fair weather electricity effect on clouds has been hitherto demonstrated. Here we report surface measurements of radiation emitted and scattered by extensive thin continental cloud, which, after ~2 min delay, shows changes closely following the fair weather electric field. For typical fluctuations in the fair weather electric field, changes of about 10% are subsequently induced in the diffuse short-wave radiation. These observations are consistent with enhanced production of large cloud droplets from charging at layer cloud edges.
Resumo:
Galactic cosmic ray (GCR) changes have been suggested to affect weather and climate, and new evidence is presented here directly linking GCRs with clouds. Clouds increase the diffuse solar radiation, measured continuously at UK surface meteorological sites since 1947. The ratio of diffuse to total solar radiation-the diffuse fraction, (DF)-is used to infer cloud, and is compared with the daily mean neutron count rate measured at Climax; Colorado from 1951-2000, which provides a globally representative indicator of cosmic rays. Across the UK, oil days of high cosmic ray flux (above 3600 X 10(2) neutron counts h(-1), which occur 87% of the time on average) compared with low cosmic ray flux, (i) the chance of an overcast day increases by (19 +/- 4)%; and (ii) the diffuse fraction increases by (2 +/- 0.3)%. During sudden transient reductions in cosmic rays (e.g. Forbush events), simultaneous decreases occur in the diffuse fraction. The diffuse radiation changes are; therefore; unambiguously due to cosmic rays. Although the statistically significant nonlinear cosmic ray effect is small, it will have a considerably larger aggregate effect on longer timescale (e.g. centennial) climate variations when day-to-day variability averages out.