161 resultados para Corporate bonds
Resumo:
A family of 16 isomolecular salts (3-XpyH)(2)[MX'(4)] (3-XpyH=3-halopyridinium; M=Co, Zn; X=(F), Cl, Br, (I); X'=Cl, Br, I) each containing rigid organic cations and tetrahedral halometallate anions has been prepared and characterized by X-ray single crystal and/or powder diffraction. Their crystal structures reflect the competition and cooperation between non-covalent interactions: N-H center dot center dot center dot X'-M hydrogen bonds, C-X center dot center dot center dot X'-M halogen bonds and pi-pi stacking. The latter are essentially unchanged in strength across the series, but both halogen bonds and hydrogen bonds are modified in strength upon changing the halogens involved. Changing the organic halogen (X) from F to I strengthens the C-X center dot center dot center dot X'-M halogen bonds, whereas an analogous change of the inorganic halogen (X') weakens both halogen bonds and N-H center dot center dot center dot X'-M hydrogen bonds. By so tuning the strength of the putative halogen bonds from repulsive to weak to moderately strong attractive interactions, the hierarchy of the interactions has been modified rationally leading to systematic changes in crystal packing. Three classes of crystal structure are obtained. In type A (C-F center dot center dot center dot X'-M) halogen bonds are absent. The structure is directed by N-H center dot center dot center dot X'-M hydrogen bonds and pi-stacking interactions. In type B structures, involving small organic halogens (X) and large inorganic halogens (X'), long (weak) C-X center dot center dot center dot X'-M interactions are observed with type I halogen-halogen interaction geometries (C-X center dot center dot center dot X' approximate to X center dot center dot center dot X'-M approximate to 155 degrees), but hydrogen bonds still dominate. Thus, minor but quite significant perturbations from the type A structure arise. In type C, involving larger organic halogens (X) and smaller inorganic halogens (X'), stronger halogen bonds are formed with a type II halogen-halogen interaction geometry (C-X center dot center dot center dot X' approximate to 180 degrees; X center dot center dot center dot X'-M approximate to 110 degrees) that is electrostatically attractive. The halogen bonds play a major role alongside hydrogen bonds in directing the type C structures, which as a result are quite different from type A and B.
Resumo:
Financial Protection in the UK Building Industry provides comprehensive treatment of a complex aspect of construction management which is increasingly important in modern construction contracts. The term 'Financial Protection' refers to refers to the various mechanisms by which funds are made available to ensure the due performance of a partys contractual obligations. This book is based on material written for a research project funded by the Reading Construction Forum. Financial Protection in the UK Building Industry looks at the legal and economic background to the problem of providing financial protection to clients to guard against poor performance and or the insolvency of contractors, consultants and sub-contractors. The inclusion of practical guidance notes and summaries makes this a valuable guide for the construction professional as well as for the researcher. * provides in-depth analysis of financial protection measures * explores the ways in which financial protection can increase efficiency in the industry * financial protection in construction is beset with problems - this book points toward practical solutions
Resumo:
The measurement of public attitudes towards the criminal law has become an important area of research in recent years because of the perceived desirability of ensuring that the legal system reflects broader societal values. In particular, studies into public perceptions of crime seriousness have attempted to measure the degree of concordance that exists between law and public opinion in the organization and enforcement of criminal offences. These understandings of perceived crime seriousness are particularly important in relation to high-profile issues where public confidence in the law is central to the legal agenda, such as the enforcement of work-related fatality cases. A need to respond to public concern over this issue was cited as a primary justification for the introduction of the Corporate Manslaughter and Corporate Homicide Act 2007. This article will suggest that, although literature looking at the perceived seriousness of corporate crime and, particularly, health and safety offences is limited in volume and generalist in scope, important lessons can be gleaned from existing literature, and pressing questions are raised that demand further empirical investigation.
Resumo:
This paper contributes to a growing body of literature that critically examines how mining companies are embracing community development challenges in developing countries, drawing on experiences from Ghana. Despite receiving considerable praise from the donor and industry communities, the actions being taken by Ghana's major mining companies to foster community development are facilitating few improvements in the rural regions where activities take place. Companies are generally implementing community development programmes that are incapable of alleviating rural hardship and are coordinating destructive displacement exercises. The analysis serves as a stark reminder that mining companies are not charities and engage with African countries strictly for commercial purposes.
Resumo:
Motivation: Hydrogen bonds are one of the most important inter-atomic interactions in biology. Previous experimental, theoretical and bioinformatics analyses have shown that the hydrogen bonding potential of amino acids is generally satisfied and that buried unsatisfied hydrogen-bond-capable residues are destabilizing. When studying mutant proteins, or introducing mutations to residues involved in hydrogen bonding, one needs to know whether a hydrogen bond can be maintained. Our aim, therefore, was to develop a rapid method to evaluate whether a sidechain can form a hydrogen-bond. Results: A novel knowledge-based approach was developed in which the conformations accessible to the residues involved are taken into account. Residues involved in hydrogen bonds in a set of high resolution crystal structures were analyzed and this analysis is then applied to a given protein. The program was applied to assess mutations in the tumour-suppressor protein, p53. This raised the number of distinct mutations identified as disrupting sidechain-sidechain hydrogen bonding from 181 in our previous analysis to 202 in this analysis.
Resumo:
The human immunodeficiency virus (HIV) envelope (Env) glycoprotein (gp) 120 is a highly disulfide-bonded molecule that attaches HIV to the lymphocyte surface receptors CD4 and CXCR4. Conformation changes within gp120 result from binding and trigger HIV/cell fusion. Inhibition of lymphocyte surface-associated protein-disulfide isomerase (PDI) blocks HIV/cell fusion, suggesting that redox changes within Env are required. Using a sensitive assay based on a thiol reagent, we show that (i) the thiol content of gp120, either secreted by mammalian cells or bound to a lymphocyte surface enabling CD4 but not CXCR4 binding, was 0.5-1 pmol SH/pmol gp120 (SH/gp120), whereas that of gp120 after its interaction with a surface enabling both CD4 and CXCR4 binding was raised to 4 SH/gp120; (ii) PDI inhibitors prevented this change; and (iii) gp120 displaying 2 SH/gp120 exhibited CD4 but not CXCR4 binding capacity. In addition, PDI inhibition did not impair gp120 binding to receptors. We conclude that on average two of the nine disulfides of gp120 are reduced during interaction with the lymphocyte surface after CXCR4 binding prior to fusion and that cell surface PDI catalyzes this process. Disulfide bond restructuring within Env may constitute the molecular basis of the post-receptor binding conformational changes that induce fusion competence.
Resumo:
Two structurally characterised examples of air stable Cu-1 (amino N)(2)(imino N)(2) chromophores having a Cu(II/I) potential of 0.01-0.19 V vs SCE in CH2Cl2 are provided using two tetradentate N-donor ligands.
Resumo:
Asymmetric hydrogenation of C=C bonds is of the highest importance in organic synthesis, and such reactions are currently carried out with organometallic homogeneous catalysts. Achieving heterogeneous metal-catalyzed hydrogenation, a highly desirable goal, necessitates forcing the crucial enantiodifferentiating step to take place at the metal surface. By synthesis and application of six chiral sulfide ligands that anchor robustly to Pd nanoparticles and resist displacement, we have for the first time accomplished heterogeneous enantioselective catalytic hydrogenation of isophorone. High resolution XPS data established that ligand adsorption from solution occurred exclusively on the Pd nanoparticles and not on the carbon support. All ligands contained a pyrrolidine nitrogen to enable their interaction with the isophorone substrate while the sulfide functionality provided the required interaction with the Pd surface. Enantioselective turnover numbers of up to similar to 100 product molecules per ligand molecule were found with a very large variation in asymmetric induction between ligands: observed enantiomeric excesses increased with increasing size of the alkyl group in the sulfide. This likely reflects varying degrees of ligand dispersion on the surface: bulky substituent groups hinder close approach of ligand molecules to each other, inhibiting close-packed island formation, favoring dispersion as separate molecules, and leading to effective asymmetric induction. Conversely, small substituents favor island formation leading to very low asymmetric induction. Enantioselective reaction most likely involves initial formation of an enamine or iminium species, confirmed by use of an analogous tertiary amine, which leads to racemic product. Ligand rigidity and resistance to self-assembled monolayer formation are important attributes that should be designed into improved chiral modifiers.
Resumo:
The annual survey of corporate real estate practices has been conducted by CREMRU since 1993 and in collaboration with Johnsons Controls Inc. since 1997. This year the survey forms the first stage of a broader research project: International Survey of Corporate Real Estate Practices: longitudinal study 1993-2002, being undertaken for the Innovative Construction Research Centre at the University of Reading, funded by the Engineering and Physical Sciences Research Council. The survey has been endorsed by CoreNet, the leading professional association concerned with corporate real estate, which opened it to a wider audience. This summary of the ten annual surveys focuses on the incidence of corporate real estate management (CREM) policies, functions and activities, as well as the assessment of knowledge or skills relevant to the CREM function in the future. Both are of vital interest to educational institutions concerned with this field, as well as the personnel and training functions within organisations concerned with better management of their property.
Resumo:
The title cocrystal, C18H15OP center dot C6H6O2, belongs to a series of molecular systems based on triphenylphosphine P-oxide. The O atom of the oxide group acts as an acceptor for hydrogen bonds from OH groups of two hydroquinone molecules which lie on inversion centres [O center dot center dot center dot O = 2.7451 (17) and 2.681 (2) A S]. The crystal structure is stabilized by weak C-H center dot center dot center dot O hydrogen bonds, forming a C-2(1)(8) chain which runs parallel to the [100] direction.