77 resultados para Combined
Resumo:
A numerical algorithm for the biharmonic equation in domains with piecewise smooth boundaries is presented. It is intended for problems describing the Stokes flow in the situations where one has corners or cusps formed by parts of the domain boundary and, due to the nature of the boundary conditions on these parts of the boundary, these regions have a global effect on the shape of the whole domain and hence have to be resolved with sufficient accuracy. The algorithm combines the boundary integral equation method for the main part of the flow domain and the finite-element method which is used to resolve the corner/cusp regions. Two parts of the solution are matched along a numerical ‘internal interface’ or, as a variant, two interfaces, and they are determined simultaneously by inverting a combined matrix in the course of iterations. The algorithm is illustrated by considering the flow configuration of ‘curtain coating’, a flow where a sheet of liquid impinges onto a moving solid substrate, which is particularly sensitive to what happens in the corner region formed, physically, by the free surface and the solid boundary. The ‘moving contact line problem’ is addressed in the framework of an earlier developed interface formation model which treats the dynamic contact angle as part of the solution, as opposed to it being a prescribed function of the contact line speed, as in the so-called ‘slip models’. Keywords: Dynamic contact angle; finite elements; free surface flows; hybrid numerical technique; Stokes equations.
Resumo:
Point defects in metal oxides such as TiO2 are key to their applications in numerous technologies. The investigation of thermally induced nonstoichiometry in TiO2 is complicated by the difficulties in preparing and determining a desired degree of nonstoichiometry. We study controlled self-doping of TiO2 by adsorption of 1/8 and 1/16 monolayer Ti at the (110) surface using a combination of experimental and computational approaches to unravel the details of the adsorption process and the oxidation state of Ti. Upon adsorption of Ti, x-ray and ultraviolet photoemission spectroscopy (XPS and UPS) show formation of reduced Ti. Comparison of pure density functional theory (DFT) with experiment shows that pure DFT provides an inconsistent description of the electronic structure. To surmount this difficulty, we apply DFT corrected for on-site Coulomb interaction (DFT+U) to describe reduced Ti ions. The optimal value of U is 3 eV, determined from comparison of the computed Ti 3d electronic density of states with the UPS data. DFT+U and UPS show the appearance of a Ti 3d adsorbate-induced state at 1.3 eV above the valence band and 1.0 eV below the conduction band. The computations show that the adsorbed Ti atom is oxidized to Ti2+ and a fivefold coordinated surface Ti atom is reduced to Ti3+, while the remaining electron is distributed among other surface Ti atoms. The UPS data are best fitted with reduced Ti2+ and Ti3+ ions. These results demonstrate that the complexity of doped metal oxides is best understood with a combination of experiment and appropriate computations.
Condition number estimates for combined potential boundary integral operators in acoustic scattering
Resumo:
We study the classical combined field integral equation formulations for time-harmonic acoustic scattering by a sound soft bounded obstacle, namely the indirect formulation due to Brakhage-Werner/Leis/Panic, and the direct formulation associated with the names of Burton and Miller. We obtain lower and upper bounds on the condition numbers for these formulations, emphasising dependence on the frequency, the geometry of the scatterer, and the coupling parameter. Of independent interest we also obtain upper and lower bounds on the norms of two oscillatory integral operators, namely the classical acoustic single- and double-layer potential operators.
Extraction of tidal channel networks from aerial photographs alone and combined with laser altimetry
Resumo:
Tidal channel networks play an important role in the intertidal zone, exerting substantial control over the hydrodynamics and sediment transport of the region and hence over the evolution of the salt marshes and tidal flats. The study of the morphodynamics of tidal channels is currently an active area of research, and a number of theories have been proposed which require for their validation measurement of channels over extensive areas. Remotely sensed data provide a suitable means for such channel mapping. The paper describes a technique that may be adapted to extract tidal channels from either aerial photographs or LiDAR data separately, or from both types of data used together in a fusion approach. Application of the technique to channel extraction from LiDAR data has been described previously. However, aerial photographs of intertidal zones are much more commonly available than LiDAR data, and most LiDAR flights now involve acquisition of multispectral images to complement the LiDAR data. In view of this, the paper investigates the use of multispectral data for semiautomatic identification of tidal channels, firstly from only aerial photographs or linescanner data, and secondly from fused linescanner and LiDAR data sets. A multi-level, knowledge-based approach is employed. The algorithm based on aerial photography can achieve a useful channel extraction, though may fail to detect some of the smaller channels, partly because the spectral response of parts of the non-channel areas may be similar to that of the channels. The algorithm for channel extraction from fused LiDAR and spectral data gives an increased accuracy, though only slightly higher than that obtained using LiDAR data alone. The results illustrate the difficulty of developing a fully automated method, and justify the semi-automatic approach adopted.
Resumo:
Commercially supplied chicken breast muscle was subjected to simultaneous heat and pressure treatments. Treatment conditions ranged from ambient temperature to 70 °C and from 0.1 to 800 MPa, respectively, in various combinations. Texture profile analysis (TPA) of the treated samples was performed to determine changes in muscle hardness. At treatment temperatures up to and including 50 °C, heat and pressure acted synergistically to increase muscle hardness. However, at 60 and 70 °C, hardness decreased following treatments in excess of 200 MPa. TPA was performed on extracted myofibrillar protein gels that after treatment under similar conditions revealed similar effects of heat and pressure. Differential scanning calorimetry analysis of whole muscle samples revealed that at ambient pressure the unfolding of myosin was completed at 60 °C, unlike actin, which completely denatured only above 70 °C. With simultaneous pressure treatment at >200 MPa, myosin and actin unfolded at 20 °C. Unfolding of myosin and actin could be induced in extracted myofibrillar protein with simultaneous treatment at 200 MPa and 40 °C. Electrophoretic analysis indicated high pressure/temperature regimens induced disulfide bonding between myosin chains.
Resumo:
The effectiveness of a formulated product containing spores of the naturally occurring fungus Paecilomyces lilacinus, strain 251, was evaluated against root-knot nematodes in pot and greenhouse experiments. Decrease of second-stage juveniles hatching from eggs was recorded by using the bio-nematicide at a dose of 4 kg ha(-1), while a further decrease was recorded by doubling the dose. However, the mortality rate decreased by increasing the inoculum level. Application of P. lilacinus and Bacillus firmus, singly or together in pot experiments, provided effective control of second-stage juveniles, eggs or egg masses of root-knot nematodes. In a greenhouse experiment, the bio-nematicide was evaluated for its potential to control root-knot nematodes either as a stand-alone method or in combination with soil solarization. Soil was solarized for 15 d and the bio-nematicide was applied just after the removal of the plastic sheet. Soil solarization for 15 d either alone or combined with the use of P. lilacinus did not provide satisfactory control of root-knot nematodes. The use of oxamyl, which was applied 2 weeks before and during transplanting, gave results similar to the commercial product containing P. lilacinus but superior to soil solarization. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A methodology is presented for the development of a combined seasonal weather and crop productivity forecasting system. The first stage of the methodology is the determination of the spatial scale(s) on which the system could operate; this determination has been made for the case of groundnut production in India. Rainfall is a dominant climatic determinant of groundnut yield in India. The relationship between yield and rainfall has been explored using data from 1966 to 1995. On the all-India scale, seasonal rainfall explains 52% of the variance in yield. On the subdivisional scale, correlations vary between variance r(2) = 0.62 (significance level p < 10(-4)) and a negative correlation with r(2) = 0.1 (p = 0.13). The spatial structure of the relationship between rainfall and groundnut yield has been explored using empirical orthogonal function (EOF) analysis. A coherent, large-scale pattern emerges for both rainfall and yield. On the subdivisional scale (similar to 300 km), the first principal component (PC) of rainfall is correlated well with the first PC of yield (r(2) = 0.53, p < 10(-4)), demonstrating that the large-scale patterns picked out by the EOFs are related. The physical significance of this result is demonstrated. Use of larger averaging areas for the EOF analysis resulted in lower and (over time) less robust correlations. Because of this loss of detail when using larger spatial scales, the subdivisional scale is suggested as an upper limit on the spatial scale for the proposed forecasting system. Further, district-level EOFs of the yield data demonstrate the validity of upscaling these data to the subdivisional scale. Similar patterns have been produced using data on both of these scales, and the first PCs are very highly correlated (r(2) = 0.96). Hence, a working spatial scale has been identified, typical of that used in seasonal weather forecasting, that can form the basis of crop modeling work for the case of groundnut production in India. Last, the change in correlation between yield and seasonal rainfall during the study period has been examined using seasonal totals and monthly EOFs. A further link between yield and subseasonal variability is demonstrated via analysis of dynamical data.
Resumo:
The effectiveness of a formulated bio-nematicide product containing lyophilized bacteria spores of Bacillus firmus was evaluated against root-knot nematodes (RKN) in greenhouse and field experiments. A decrease of second stage juveniles hatching from eggs was recorded by using the bio-nematicide at a dose of 0.9 g kg(-1) of soil while further a decrease was recorded by doubling the dose. However, the mortality rate decreased as the inoculurn level increased. Exposure of either second stage juveniles or egg masses to temperatures of 35-40 degrees C for 1-4 weeks had a marked effect on their survival. In a field experiment, the bio-nematicide was evaluated for its potential to control RKN either as a stand-alone method or in combination with soil solarization. The latter was tested for 15-30 days and the bionematicide was applied just before soil coverage with the plastic sheet or just after its removal. Soil solarization either for 15-30 days provided satisfactory control of RKN. The combination of soil solarization with the bio-nematicide improved nematode control and gave results similar to the chemical treatment. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Differences in the expression of cell surface proteins between a normal prostate epithelial (1542-NP2TX) and a prostate cancer cell line (1542-CP3TX) derived from the same patient were investigated. A combination of affinity chromatographic purification of biotin-tagged surface proteins with mass spectrometry analysis identified 26 integral membrane proteins and 14 peripheral surface proteins. The findings confirm earlier reports of altered expression in prostate cancer for several cell surface proteins, including ALCAM/CD166, the Ephrin type A receptor, EGFR and the prostaglandin F2 receptor regulatory protein. In addition, several novel findings of differential expression were made, including the voltage-dependent anion selective channel proteins Porin 1 and 2, ecto-5'-nucleotidase (CD73) and Scavenger receptor B1. Cell surface protein expression changed both qualitatively and quantitatively when the cells were grown in the presence of either or both interferon INFalpha and INFgamma. Costimulation with type I and II interferons had additive or synergistic effects on the membrane density of several, mainly peripherally attached surface proteins. Concerted upregulation of surface exposed antigens may be of benefit in immuno-adjuvant-based treatment of interferon-responsive prostate cancer. In conclusion, this study demonstrates that differences in the expression of membrane proteins between normal and prostate cancer cells are reproducibly detectable following vectorial labelling with biotin, and that detailed analysis of extracellular-induced surface changes can be achieved by combining surface-specific labelling with high-resolution two-dimensional gel electrophoresis and mass spectrometry.
Resumo:
In a previous work, we carried out inelastic neutron scattering (INS) spectroscopy experiments and preliminary first principles calculations on alkali metal hydrides. The complete series of alkali metal hydrides, LiH, NaH, KH, RbH and CsH was measured in the high-resolution TOSCA INS spectrometer at ISIS. Here, we present the results of ab initio electronic structure calculations of the properties of the alkali metal hydrides using both the local density approximation (LDA) and the generalized gradient approximation (GGA), using the Perdew–Burke–Ernzerhof (PBE) parameterization. Properties calculated were lattice parameters, bulk moduli, dielectric constants, effective charges, electronic densities and inelastic neutron scattering (INS) spectra. We took advantage of the currently available computer power to use full lattice dynamics theory to calculate thermodynamic properties for these materials. For the alkali metal hydrides (LiH, NaH, KH, RbH and CsH) using lattice dynamics, we found that the INS spectra calculated using LDA agreed better with the experimental data than the spectra calculated using GGA. Both zero-point effects and thermal contributions to free energies had an important effect on INS and several thermodynamic properties.