78 resultados para Collapse Mechanism
Resumo:
Large magnitude explosive eruptions are the result of the rapid and large-scale transport of silicic magma stored in the Earth's crust, but the mechanics of erupting teratonnes of silicic magma remain poorly understood. Here, we demonstrate that the combined effect of local crustal extension and magma chamber overpressure can sustain linear dyke-fed explosive eruptions with mass fluxes in excess of 10^10 kg/s from shallow-seated (4–6 km depth) chambers during moderate extensional stresses. Early eruption column collapse is facilitated with eruption duration of the order of few days with an intensity of at least one order of magnitude greater than the largest eruptions in the 20th century. The conditions explored in this study are one way in which high mass eruption rates can be achieved to feed large explosive eruptions. Our results corroborate geological and volcanological evidences from volcano-tectonic complexes such as the Sierra Madre Occidental (Mexico) and the Taupo Volcanic Zone (New Zealand).
Resumo:
Lava dome eruptions are sometimes characterised by large periodic fluctuations in extrusion rate over periods of hours that may be accompanied by Vulcanian explosions and pyroclastic flows. We consider a simple system of nonlinear equations describing a 1D flow of lava extrusion through a deep elastic dyke feeding a shallower cylindrical conduit in order to simulate this short-period cyclicity. Stick-slip conditions depending on a critical shear stress are assumed at the wall boundary of the cylindrical conduit. By analogy with the behaviour of industrial polymers in a plastic extruder, the elastic dyke acts like a barrel and the shallower cylindrical portion of the conduit as a die for the flow of magma acting as a polymer. When we applied the model to the Soufrière Hills Volcano, Montserrat, for which the key parameters have been evaluated from previous studies, cyclic extrusions with periods from 3 to 30 h were readily simulated, matching observations. The model also reproduces the reduced period of cycles observed when a major unloading event occurs due to lava dome collapse.
Resumo:
We developed a family of polymer-drug conjugates carrying the combination of the anticancer agent epirubicin (EPI) and nitric oxide (NO). EPI-PEG-(NO)8, carrying the highest content of NO, displayed greater activity in Caco-2 cells while it decreased toxicity against endothelium cells and cardiomyocytes with respect to free EPI. FACS and confocal microscopy confirmed conjugates internalization. Light scattering showed formation of micelle whose size correlated with internalization rate. EPI-PEG-(NO)8 showed increased bioavailability in mice compared to free EPI.
Resumo:
The Bonin high is a subtropical anticyclone that is predominant near Japan in the summer. This anticyclone is associated with an equivalent-barotropic structure, often extending throughout the entire troposphere. Although the equivalent-barotropic structure of the Bonin high has been known for years among synopticians because of its importance to the summer climate in east Asia, there are few dynamical explanations for such a structure. The present paper attempts to provide a formation mechanism for the deep ridge near Japan. We propose a new hypothesis that this equivalent-barotropic ridge near Japan is formed as a result of the propagation of stationary Rossby waves along the Asian jet in the upper troposphere (‘the Silk Road pattern’). First, the monthly mean climatology is examined in order to demonstrate this hypothesis. It is shown that the enhanced Asian jet in August is favourable for the propagation of stationary Rossby waves and that the regions of descent over the eastern Mediterranean Sea and the Aral Sea act as two major wave sources. Second, a primitive-equation model is used to simulate the climatology of August. The model successfully simulates the Bonin high with an equivalent-barotropic structure. The upper-tropospheric ridge is found to be enhanced by a height anomaly of more than 80 m at 200 hPa, when a wave packet arrives. Sensitivity experiments are conducted to show that the removal of the diabatic cooling over the Asian jet suppresses the Silk Road pattern and formation of an equivalent-barotropic ridge near Japan, while the removal of the diabatic heating in the western Pacific does not. Copyright © 2003 Royal Meteorological Society
Resumo:
The propagation velocity and propagation mechanism for vortices on a β plane are determined for a reduced-gravity model by integrating the momentum equations over the β plane. Isolated vortices, vortices in a background current, and initial vortex propagation from rest are studied. The propagation mechanism for isolated anticyclones as well as cyclones, which has been lacking up to now, is presented. It is shown that, to first order, the vortex moves to generate a Coriolis force on the mass anomaly of the vortex to compensate for the force on the vortex due to the variation of the Coriolis parameter. Only the mass anomaly of the vortex is of importance, because the Coriolis force due to the motion of the bulk of the layer moving with the vortex is almost fully compensated by the Coriolis force on the motion of the exterior flow. Because the mass anomaly of a cyclone is negative the force and acceleration have opposite sign. The role of dipolar structures in steadily moving vortices is discussed, and it is shown that their overall structure is fixed by the steady westward motion of the mass anomaly. Furthermore, it is shown that reduced-gravity vortices are not advected with a background flow. The reason for this behavior is that the background flow changes the ambient vorticity gradient such that the vortex obtains an extra self-propagation term that exactly cancels the advection by the background flow. Last, it is shown that a vortex initially at rest will accelerate equatorward first, after which a westward motion is generated. This result is independent of the sign of the vortex.
Resumo:
During many lava dome-forming eruptions, persistent rockfalls and the concurrent development of a substantial talus apron around the foot of the dome are important aspects of the observed activity. An improved understanding of internal dome structure, including the shape and internal boundaries of the talus apron, is critical for determining when a lava dome is poised for a major collapse and how this collapse might ensue. We consider a period of lava dome growth at the Soufrière Hills Volcano, Montserrat, from August 2005 to May 2006, during which a 100 × 106 m3 lava dome developed that culminated in a major dome-collapse event on 20 May 2006. We use an axi-symmetrical Finite Element Method model to simulate the growth and evolution of the lava dome, including the development of the talus apron. We first test the generic behaviour of this continuum model, which has core lava and carapace/talus components. Our model describes the generation rate of talus, including its spatial and temporal variation, as well as its post-generation deformation, which is important for an improved understanding of the internal configuration and structure of the dome. We then use our model to simulate the 2005 to 2006 Soufrière Hills dome growth using measured dome volumes and extrusion rates to drive the model and generate the evolving configuration of the dome core and carapace/talus domains. The evolution of the model is compared with the observed rockfall seismicity using event counts and seismic energy parameters, which are used here as a measure of rockfall intensity and hence a first-order proxy for volumes. The range of model-derived volume increments of talus aggraded to the talus slope per recorded rockfall event, approximately 3 × 103–13 × 103 m3 per rockfall, is high with respect to estimates based on observed events. From this, it is inferred that some of the volumetric growth of the talus apron (perhaps up to 60–70%) might have occurred in the form of aseismic deformation of the talus, forced by an internal, laterally spreading core. Talus apron growth by this mechanism has not previously been identified, and this suggests that the core, hosting hot gas-rich lava, could have a greater lateral extent than previously considered.
Resumo:
Examination of conditional instability of the second kind (CISK) and wind-induced surface heat exchange (WISHE), two proposed mechanisms for tropical cyclone and polar low intensification, suggests that the sensitivity of the intensification rate of these disturbances to surface properties, such as surface friction and moisture supply, will be different for the two mechanisms. These sensitivities were examined by perturbing the surface characteristics in a numerical model with explicit convection. The intensification rate was found to have a strong positive dependence on the heat and moisture transfer coefficients, while remaining largely insensitive to the frictional drag coefficient. CISK does not predict the observed dependence of vortex intensification rate on the heat and moisture transfer coefficients, nor the insensitivity to the frictional drag coefficient since it anticipates that intensification rate is controlled by frictional convergence in the boundary layer. Since neither conditional instability nor boundary moisture content showed any significant sensitivity to the transfer coefficients, this is true of CISK using both the convective closures of Ooyama and of Charney and Eliassen. In comparison, the WISHE intensification mechanism does predict the observed increase in intensification rate with heat and moisture transfer coefficients, while not anticipating a direct influence from surface friction.
Resumo:
Shoot dieback is a problem in frequently trimmed Leyland hedges and is increasingly affecting gardeners’ choice of hedge trees, having a negative effect on a conifer nursery industry. Some damage can be attributed to the feeding by aphids, but it is unclear if there are also underlying physiological causes. In this study, we tested the hypothesis that shoot-clipping of conifer trees during adverse growing conditions (i.e. high air temperature and low soil moisture) could be leading to shoot ‘dieback’. Three-year-old Golden Leyland Cypress (x Cupressocyparis leylandii ‘Excalibur Gold’) plants were subjected to either a well-watered or droughted irrigation regime and placed in either a ‘hot’ (average day temperature = 40°C) or a ‘cool’ (average day temperature = 27°C) glasshouse compartment. Half of the plants from each glasshouse were clipped on Day 14 and again on Day 50. Measurements of soil moisture content (SMC), net CO2 assimilation rate (A), stomatal conductance (gs), branchlet xylem water potential (XWP), plant height and foliage colour were made. Within the clipped and unclipped treatments of both glasshouse compartments, plants from the droughted regime had significantly lower values for A, gs and XWP than those from the well-watered regime. However, there was no difference in these parameters between the hot and cool glasshouse compartments. The trends seen for A, gs and XWP of all treatments generally mirrored changes in SMC indicating a direct effect of water supply on these parameters. By the end of the experiment the overall foliage colour of plants from the hot glasshouse was darker than that of plants from the cool glasshouse and the overall foliage colour was also darker following shoot clipping. In general, shoot clipping led to increases in A, gs XWP and SMC. This may be due to the reduction in total leaf area leading to a greater supply of water for the remaining leaves. No shoot ‘dieback’ was observed in any treatment in response to drought stress or shoot-clipping.
Resumo:
An outdoor experiment was conducted to increase understanding of apical leaf necrosis in the presence of pathogen infection. Holcus lanatus seeds and Puccinia coronata spores were collected from two adjacent and otherwise similar habitats with differing long-term N fertilization levels. After inoculation, disease and necrosis dynamics were observed during the plant growing seasons of 2003 and 2006. In both years high nutrient availability resulted in earlier disease onset, a higher pathogen population growth rate, earlier physiological apical leaf necrosis onset and a reduced time between disease onset and apical leaf necrosis onset. Necrosis rate was shown to be independent of nutrient availability. The results showed that in these nutrient-rich habitats H. lanatus plants adopted necrosis mechanisms which wasted more nutrients. There was some indication that these necrosis mechanisms were subject to local selection pressures, but these results were not conclusive. The findings of this study are consistent with apical leaf necrosis being an evolved defence mechanism.
Resumo:
Oxidised low density lipoprotein (LDL) may be involved in the pathogenesis of atherosclerosis. We have therefore investigated the mechanisms underlying the antioxidant/pro-oxidant behavior of dehydroascorbate, the oxidation product of ascorbic acid, toward LDL incubated With Cu2+ ions. By monitoring lipid peroxidation through the formation of conjugated dienes and lipid hydroperoxides, we show that the pro-oxidant activity of dehydroascorbate is critically dependent on the presence of lipid hydroperoxides, which accumulate during the early stages of oxidation. Using electron paramagnetic resonance spectroscopy, we show that dehydroascorbate amplifies the generation of alkoxyl radicals during the interaction of copper ions with the model alkyl hydroperoxide, tert-butylhydroperoxide. Under continuous-flow conditions, a prominent doublet signal was detected, which we attribute to both the erythroascorbate and ascorbate free radicals. On this basis, we propose that the pro-oxidant activity of dehydroascorbate toward LDL is due to its known spontaneous interconversion to erythroascorbate and ascorbate, which reduce Cu2+ to Cu+ and thereby promote the decomposition of lipid hydroperoxides. Various mechanisms, including copper chelation and Cu+ oxidation, are suggested to underlie the antioxidant behavior of dehydroascorbate in LDL that is essentially free of lipid hydroperoxides. (C) 2007 Elsevier Inc. All rights reserved.