201 resultados para Climate monitoring and alerting
Resumo:
The long-term stability, high accuracy, all-weather capability, high vertical resolution, and global coverage of Global Navigation Satellite System (GNSS) radio occultation (RO) suggests it as a promising tool for global monitoring of atmospheric temperature change. With the aim to investigate and quantify how well a GNSS RO observing system is able to detect climate trends, we are currently performing an (climate) observing system simulation experiment over the 25-year period 2001 to 2025, which involves quasi-realistic modeling of the neutral atmosphere and the ionosphere. We carried out two climate simulations with the general circulation model MAECHAM5 (Middle Atmosphere European Centre/Hamburg Model Version 5) of the MPI-M Hamburg, covering the period 2001–2025: One control run with natural variability only and one run also including anthropogenic forcings due to greenhouse gases, sulfate aerosols, and tropospheric ozone. On the basis of this, we perform quasi-realistic simulations of RO observables for a small GNSS receiver constellation (six satellites), state-of-the-art data processing for atmospheric profiles retrieval, and a statistical analysis of temperature trends in both the “observed” climatology and the “true” climatology. Here we describe the setup of the experiment and results from a test bed study conducted to obtain a basic set of realistic estimates of observational errors (instrument- and retrieval processing-related errors) and sampling errors (due to spatial-temporal undersampling). The test bed results, obtained for a typical summer season and compared to the climatic 2001–2025 trends from the MAECHAM5 simulation including anthropogenic forcing, were found encouraging for performing the full 25-year experiment. They indicated that observational and sampling errors (both contributing about 0.2 K) are consistent with recent estimates of these errors from real RO data and that they should be sufficiently small for monitoring expected temperature trends in the global atmosphere over the next 10 to 20 years in most regions of the upper troposphere and lower stratosphere (UTLS). Inspection of the MAECHAM5 trends in different RO-accessible atmospheric parameters (microwave refractivity and pressure/geopotential height in addition to temperature) indicates complementary climate change sensitivity in different regions of the UTLS so that optimized climate monitoring shall combine information from all climatic key variables retrievable from GNSS RO data.
Resumo:
Considerable efforts are currently invested into the setup of a Global Climate Observing System (GCOS) for monitoring climate change over the coming decades, which is of high relevance given concerns on increasing human influences. A promising potential contribution to the GCOS is a suite of spaceborne Global Navigation Satellite System (GNSS) occultation sensors for global long-term monitoring of atmospheric change in temperature and other variables with high vertical resolution and accuracy. Besides the great importance with respect to climate change, the provision of high quality data is essential for the improvement of numerical weather prediction and for reanalysis efforts. We review the significance of GNSS radio occultation sounding in the climate observations context. In order to investigate the climate change detection capability of GNSS occultation sensors, we are currently performing an end-to-end GNSS occultation observing system simulation experiment over the 25-year period 2001 to 2025. We report on this integrated analysis, which involves in a realistic manner all aspects from modeling the atmosphere via generating a significant set of stimulated measurements to an objective statistical analysis and assessment of 2001–2025 temporal trends.
Resumo:
The representation of the diurnal cycle in the Hadley Centre climate model is evaluated using simulations of the infrared radiances observed by Meteosat 7. In both the window and water vapour channels, the standard version of the model with 19 levels produces a good simulation of the geographical distributions of the mean radiances and of the amplitude of the diurnal cycle. Increasing the vertical resolution to 30 levels leads to further improvements in the mean fields. The timing of the maximum and minimum radiances reveals significant model errors, however, which are sensitive to the frequency with which the radiation scheme is called. In most regions, these errors are consistent with well documented errors in the timing of convective precipitation, which peaks before noon in the model, in contrast to the observed peak in the late afternoon or evening. When the radiation scheme is called every model time step (half an hour), as opposed to every three hours in the standard version, the timing of the minimum radiance is improved for convective regions over central Africa, due to the creation of upper-level layer-cloud by detrainment from the convection scheme, which persists well after the convection itself has dissipated. However, this produces a decoupling between the timing of the diurnal cycles of precipitation and window channel radiance. The possibility is raised that a similar decoupling may occur in reality and the implications of this for the retrieval of the diurnal cycle of precipitation from infrared radiances are discussed.
Resumo:
FAMOUS is an ocean-atmosphere general circulation model of low resolution, capable of simulating approximately 120 years of model climate per wallclock day using current high performance computing facilities. It uses most of the same code as HadCM3, a widely used climate model of higher resolution and computational cost, and has been tuned to reproduce the same climate reasonably well. FAMOUS is useful for climate simulations where the computational cost makes the application of HadCM3 unfeasible, either because of the length of simulation or the size of the ensemble desired. We document a number of scientific and technical improvements to the original version of FAMOUS. These improvements include changes to the parameterisations of ozone and sea-ice which alleviate a significant cold bias from high northern latitudes and the upper troposphere, and the elimination of volume-averaged drifts in ocean tracers. A simple model of the marine carbon cycle has also been included. A particular goal of FAMOUS is to conduct millennial-scale paleoclimate simulations of Quaternary ice ages; to this end, a number of useful changes to the model infrastructure have been made.
Resumo:
Previous assessments of the impacts of climate change on heat-related mortality use the "delta method" to create temperature projection time series that are applied to temperature-mortality models to estimate future mortality impacts. The delta method means that climate model bias in the modelled present does not influence the temperature projection time series and impacts. However, the delta method assumes that climate change will result only in a change in the mean temperature but there is evidence that there will also be changes in the variability of temperature with climate change. The aim of this paper is to demonstrate the importance of considering changes in temperature variability with climate change in impacts assessments of future heat-related mortality. We investigate future heatrelated mortality impacts in six cities (Boston, Budapest, Dallas, Lisbon, London and Sydney) by applying temperature projections from the UK Meteorological Office HadCM3 climate model to the temperature-mortality models constructed and validated in Part 1. We investigate the impacts for four cases based on various combinations of mean and variability changes in temperature with climate change. The results demonstrate that higher mortality is attributed to increases in the mean and variability of temperature with climate change rather than with the change in mean temperature alone. This has implications for interpreting existing impacts estimates that have used the delta method. We present a novel method for the creation of temperature projection time series that includes changes in the mean and variability of temperature with climate change and is not influenced by climate model bias in the modelled present. The method should be useful for future impacts assessments. Few studies consider the implications that the limitations of the climate model may have on the heatrelated mortality impacts. Here, we demonstrate the importance of considering this by conducting an evaluation of the daily and extreme temperatures from HadCM3, which demonstrates that the estimates of future heat-related mortality for Dallas and Lisbon may be overestimated due to positive climate model bias. Likewise, estimates for Boston and London may be underestimated due to negative climate model bias. Finally, we briefly consider uncertainties in the impacts associated with greenhouse gas emissions and acclimatisation. The uncertainties in the mortality impacts due to different emissions scenarios of greenhouse gases in the future varied considerably by location. Allowing for acclimatisation to an extra 2°C in mean temperatures reduced future heat-related mortality by approximately half that of no acclimatisation in each city.
Resumo:
The purpose of Research Theme 4 (RT4) was to advance understanding of the basic science issues at the heart of the ENSEMBLES project, focusing on the key processes that govern climate variability and change, and that determine the predictability of climate. Particular attention was given to understanding linear and non-linear feedbacks that may lead to climate surprises,and to understanding the factors that govern the probability of extreme events. Improved understanding of these issues will contribute significantly to the quantification and reduction of uncertainty in seasonal to decadal predictions and projections of climate change. RT4 exploited the ENSEMBLES integrations (stream 1) performed in RT2A as well as undertaking its own experimentation to explore key processes within the climate system. It was working at the cutting edge of problems related to climate feedbacks, the interaction between climate variability and climate change � especially how climate change pertains to extreme events, and the predictability of the climate system on a range of time-scales. The statisticalmethodologies developed for extreme event analysis are new and state-of-the-art. The RT4-coordinated experiments, which have been conducted with six different atmospheric GCMs forced by common timeinvariant sea surface temperature (SST) and sea-ice fields (removing some sources of inter-model variability), are designed to help to understand model uncertainty (rather than scenario or initial condition uncertainty) in predictions of the response to greenhouse-gas-induced warming. RT4 links strongly with RT5 on the evaluation of the ENSEMBLES prediction system and feeds back its results to RT1 to guide improvements in the Earth system models and, through its research on predictability, to steer the development of methods for initialising the ensembles
Resumo:
The interpretation of soil water dynamics under drip irrigation systems is relevant for crop production as well as on water use and management. In this study a three-dimensional representation of the flow of water under drip irrigation is presented. The work includes analysis of the water balance at point scale as well as area-average, exploring uncertainties in water balance estimations depending on the number of locations sampled. The water flow was monitored by detailed profile water content measurements before irrigation, after irrigation and 24 h later with a dense array of soil moisture access tubes radially distributed around selected drippers. The objective was to develop a methodology that could be used on selected occasions to obtain 'snap shots' of the detailed three-dimensional patterns of soil moisture. Such patterns are likely to be very complex, as spatial variability will be induced for a number of reasons, such as strong horizontal gradients in soil moisture, variations between individual sources in the amount of water applied and spatial variability is soil hydraulic properties. Results are compared with a widely used numerical model, Hydrus-2D. The observed dynamic of the water content distribution is in good agreement with model simulations, although some discrepancies concerning the horizontal distribution of the irrigation bulb are noted due to soil heterogeneity. (c) 2006 Elsevier B.V. All rights reserved.