86 resultados para Climate and environment evolution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integration of high-resolution archaeological, textual, and environmental data with longer-term, low-resolution data affords greater precision in identifying some of the causal relationships underlying societal change. Regional and microregional case studies about the Byzantine world—in particular, Anatolia, which for several centuries was the heart of that world—reveal many of the difficulties that researchers face when attempting to assess the influence of environmental factors on human society. The Anatolian case challenges a number of assumptions about the impact of climatic factors on socio-political organization and medium-term historical evolution, highlighting the importance of further collaboration between historians, archaeologists, and climate scientists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the geological evidence that the northern Tibetan Plateau (NTP) had an uplift of a finite magnitude since the Miocene and the major Asian inland deserts formed in the early Pliocene, a regional climate model (RegCM4.1) with a horizontal resolution of 50 km was used to explore the effects of the NTP uplift and the related aridification of inland Asia on regional climate. We designed three numerical experiments including the control experiment representing the present-day condition, the high-mountain experiment representing the early Pliocene condition with uplifted NTP but absence of the Asian inland deserts, and the low-mountain experiment representing the mid-Miocene condition with reduced topography in the NTP (by as much as 2400 m) and also absence of the deserts. Our simulation results indicated that the NTP uplift caused significant reductions in annual precipitation in a broad region of inland Asia north of the Tibetan Plateau (TP) mainly due to the enhanced rain shadow effect of the mountains and changes in the regional circulations. However, four mountainous regions located in the uplift showed significant increases in precipitation, stretching from the Pamir Plateau in the west to the Qilian Mountains in the east. These mountainous areas also experienced different changes in the rainfall seasonality with the greatest increases occurring during the respective rainy seasons, predominantly resulted from the enhanced orographically forced upwind ascents. The appearance of the major deserts in the inland Asia further reduced precipitation in the region and led to increased dust emission and deposition fluxes, while the spatial patterns of dust deposition were also changed, not only in the regions of uplift-impacted topography, but also in the downwind regions. One major contribution from this study is the comparison of the simulation results with 11 existing geological records representing the moisture conditions from Miocene to Pliocene. The comparisons revealed good matches between the simulation results and the published geological records. Therefore, we conclude that the NTP uplift and the related formation of the major deserts played a controlling role in the evolution of regional climatic conditions in a broad region in inland Asia since the Miocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As one of the most important geological events in Cenozoic era, the uplift of the Tibetan Plateau (TP) has had profound influences on the Asian and global climate and environment evolution. During the past four decades, many scholars from China and abroad have studied climatic and environmental effects of the TP uplift by using a variety of geological records and paleoclimate numerical simulations. The existing research results enrich our understanding of the mechanisms of Asian monsoon changes and interior aridification, but so far there are still a lot of issues that need to be thought deeply and investigated further. This paper attempts to review the research on the influence of the TP uplift on the Asian monsoon-arid environment, summarize three types of numerical simulations including bulk-plateau uplift, phased uplift and sub-regional uplift, and especially to analyze regional differences in responses of climate and environment to different forms of tectonic uplifts. From previous modeling results, the land-sea distribution and the Himalayan uplift may have a large effect in the establishment and development of the South Asian monsoon. However, the formation and evolution of the monsoon in northern East Asia, the intensified dryness north of the TP and enhanced Asian dust cycle may be more closely related to the uplift of the main body, especially the northern part of the TP. In this review, we also discuss relative roles of the TP uplift and other impact factors, origins of the South Asian monsoon and East Asian monsoon, feedback effects and nonlinear responses of climatic and environmental changes to the plateau uplift. Finally, we make comparisons between numerical simulations and geological records, discuss their uncertainties, and highlight some problems worthy of further studying.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change, a quintessential environmental problem, is generally recognised as the most important development challenge in the 21st century (IPCC, 2014). In addition to acknowledging its many significant direct consequences, climate change is increasingly used to frame discussions on other important global challenges, such as health, energy and food security. This chapter provides understanding of the intricate and complex relationship between climate change, environment and development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impacts of current and future changes in climate have been investigated for Irish vegetation. Warming has been observed over the last two decades, with impacts that are also strongly influenced by natural oscillations of the surrounding ocean, seen as fluctuations in the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. Satellite observations show that vegetation greenness increases in warmer years, a feature mirrored by increases in net ecosystem production observed for a grassland and a plantation forest. An ensemble of general circulation model simulations of future climates indicate temperature rises over the twenty-first century ranging from 1°C to 7°C, depending on future scenarios of greenhouse gas emissions. Net primary production is simulated to increase under all scenarios, due to the positive impacts of rising temperature, a modest rise of precipitation and rising carbon dioxide concentrations. In an optimistic scenario of reducing future emissions, CO2 concentration is simulated to flatten from about 2070, although temperatures continue to increase. Under this scenario Ireland could become a source of carbon, whereas under all other emission scenarios Ireland is a sink for carbon that may increase by up to three-fold over the twenty-first century. A likely and unavoidable impact of changing climate is the arrival of alien plant species, which may disrupt ecosystems and exert negative impacts on native biodiversity. Alien species arrive continually, with about 250 dated arrivals in the twentieth century. A simulation model indicates that this rate of alien arrival may increase by anything between two and ten times, dependent on the future climatic scenario, by 2050. Which alien species may become severely disruptive is, however, not known.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The climate and natural variability of the large-scale stratospheric circulation simulated by a newly developed general circulation model are evaluated against available global observations. The simulation consisted of a 30-year annual cycle integration performed with a comprehensive model of the troposphere and stratosphere. The observations consisted of a 15-year dataset from global operational analyses of the troposphere and stratosphere. The model evaluation concentrates on the simulation of the evolution of the extratropical stratospheric circulation in both hemispheres. The December–February climatology of the observed zonal mean winter circulation is found to be reasonably well captured by the model, although in the Northern Hemisphere upper stratosphere the simulated westerly winds are systematically stronger and a cold bias is apparent in the polar stratosphere. This Northern Hemisphere stratospheric cold bias virtually disappears during spring (March–May), consistent with a realistic simulation of the spring weakening of the mean westerly winds in the model. A considerable amount of monthly interannual variability is also found in the simulation in the Northern Hemisphere in late winter and early spring. The simulated interannual variability is predominantly caused by polar warmings of the stratosphere, in agreement with observations. The breakdown of the Northern Hemisphere stratospheric polar vortex appears therefore to occur in a realistic way in the model. However, in early winter the model severely underestimates the interannual variability, especially in the upper troposphere. The Southern Hemisphere winter (June–August) zonal mean temperature is systematically colder in the model, and the simulated winds are somewhat too strong in the upper stratosphere. Contrary to the results for the Northern Hemisphere spring, this model cold bias worsens during the Southern Hemisphere spring (September–November). Significant discrepancies between the model results and the observations are therefore found during the breakdown of the Southern Hemisphere polar vortex. For instance, the simulated Southern Hemisphere stratosphere westerly jet continuously decreases in intensity more or less in situ from June to November, while the observed stratospheric jet moves downward and poleward.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sensitivity of the UK Universities Global Atmospheric Modelling Programme (UGAMP) General Circulation Model (UGCM) to two very different approaches to convective parametrization is described. Comparison is made between a Kuo scheme, which is constrained by large-scale moisture convergence, and a convective-adjustment scheme, which relaxes to observed thermodynamic states. Results from 360-day integrations with perpetual January conditions are used to describe the model's tropical time-mean climate and its variability. Both convection schemes give reasonable simulations of the time-mean climate, but the representation of the main modes of tropical variability is markedly different. The Kuo scheme has much weaker variance, confined to synoptic frequencies near 4 days, and a poor simulation of intraseasonal variability. In contrast, the convective-adjustment scheme has much more transient activity at all time-scales. The various aspects of the two schemes which might explain this difference are discussed. The particular closure on moisture convergence used in this version of the Kuo scheme is identified as being inappropriate.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An evolutionary perspective on human thought and behaviour indicates that we should expect to find universal systems of perception, classification, and decision-making regarding the natural world. It is the interaction between these evolved aspects of the human mind, the biodiversity of the natural world, and unique historical, social, and economic contexts within which individuals develop and act that gives rise to cultural diversity. The palaeoanthropological record also indicates that language is a recently evolved phenomenon. This suggests that linguistic approaches in ethnobiology are likely to provide only a partial understanding of how humans perceive, classify, and engage with the natural world.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term trends, interannual and intra-seasonal variability in the mass-balance record from Djankuat glacier, central Greater Caucasus, Russia, are related to local climate change, synoptic and large-scale anomalies in atmospheric circulation. A clear warming signal emerged in the central Greater Caucasus in the early 1990s, leading to a strong increase in ablation. In the absence of a compensating change in winter accumulation, the net mass balance of Djankuat has declined. The highest value of seasonal ablation on record was registered in the summer of 2000. At the beginning of the 21st century these trends reversed. Ablation was below average even in the summer of 2003, which was unusually warm in western Europe. Precipitation and winter accumulation were high, allowing for a partial recovery of net mass balance. The interannual variability in the components of mass balance is weakly related to the North Atlantic Oscillation (NAO) and the Scandinavian teleconnection patterns, but there is a clear link with the large-scale circulation anomalies represented by the Rossby pattern. Five synoptic categories have been identified for the ablation season of 2005, revealing a strong separation between components of radiation budget, air temperature and daily melt. Air temperature is the main control over melt. The highest values of daily ablation are related to the strongly positive NAO which forces high net radiation, and to the warm and moist advection from the Black Sea.