32 resultados para Cincinnati Astronomical Society.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Jupiter’s magnetosphere acts as a point source of near-relativistic electrons within the heliosphere. In this study, three solar cycles of Jovian electron data in near-Earth space are examined. Jovian electron intensity is found to peak for an ideal Parker spiral connection, but with considerable spread about this point. Assuming the peak in Jovian electron counts indicates the best magnetic connection to Jupiter, we find a clear trend for fast and slow solar wind to be over- and under-wound with respect to the ideal Parker spiral, respectively. This is shown to be well explained in terms of solar wind stream interactions. Thus, modulation of Jovian electrons by corotating interaction regions (CIRs) may primarily be the result of changing magnetic connection, rather than CIRs acting as barriers to cross-field diffusion. By using Jovian electrons to remote sensing magnetic connectivity with Jupiter’s magnetosphere, we suggest that they provide a means to validate solar wind models between 1 and 5 AU, even when suitable in situ solar wind observations are not available. Furthermore, using Jovian electron observations as probes of heliospheric magnetic topology could provide insight into heliospheric magnetic field braiding and turbulence, as well as any systematic under-winding of the heliospheric magnetic field relative to the Parker spiral from footpoint motion of the magnetic field.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present the first observational evidence of the near-Sun distortion of the leading edge of a coronal mass ejection (CME) by the ambient solar wind into a concave structure. On 2007 November 14, a CME was observed by coronagraphs onboard the STEREO-B spacecraft, possessing a circular cross section. Subsequently the CME passed through the field of view of the STEREO-B Heliospheric Imagers where the leading edge was observed to distort into an increasingly concave structure. The CME observations are compared to an analytical flux rope model constrained by a magnetohydrodynamic solar wind solution. The resultant bimodal speed profile is used to kinematically distort a circular structure that replicates the initial shape of the CME. The CME morphology is found to change rapidly over a relatively short distance. This indicates an approximate radial distance in the heliosphere where the solar wind forces begin to dominate over the magnetic forces of the CME influencing the shape of the CME.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An update of Owens et al. (2008) shows that the relationship between the coronal mass ejection (CME) rate and the heliospheric magnetic field strength predicts a field floor of less than 4 nT at 1 AU. This implies that the record low values measured during this solar minimum do not necessarily contradict the idea that open flux is conserved. The results are consistent with the hypothesis that CMEs add flux to the heliosphere and interchange reconnection between open flux and closed CME loops subtracts flux. An existing model embracing this hypothesis, however, overestimates flux during the current minimum, even though the CME rate has been low. The discrepancy calls for reasonable changes in model assumptions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We survey observations of the radial magnetic field in the heliosphere as a function of position, sunspot number, and sunspot cycle phase. We show that most of the differences between pairs of simultaneous observations, normalized using the square of the heliocentric distance and averaged over solar rotations, are consistent with the kinematic "flux excess" effect whereby the radial component of the frozen-in heliospheric field is increased by longitudinal solar wind speed structure. In particular, the survey shows that, as expected, the flux excess effect at high latitudes is almost completely absent during sunspot minimum but is almost the same as within the streamer belt at sunspot maximum. We study the uncertainty inherent in the use of the Ulysses result that the radial field is independent of heliographic latitude in the computation of the total open solar flux: we show that after the kinematic correction for the excess flux effect has been made it causes errors that are smaller than 4.5%, with a most likely value of 2.5%. The importance of this result for understanding temporal evolution of the open solar flux is reviewed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interplanetary coronal mass ejections (ICMEs) are often observed to travel much faster than the ambient solar wind. If the relative speed between the two exceeds the fast magnetosonic velocity, then a shock wave will form. The Mach number and the shock standoff distance ahead of the ICME leading edge is measured to infer the vertical size of an ICME in a direction that is perpendicular to the solar wind flow. We analyze the shock standoff distance for 45 events varying between 0.5 AU and 5.5 AU in order to infer their physical dimensions. We find that the average ratio of the inferred vertical size to measured radial width, referred to as the aspect ratio, of an ICME is 2.8 ± 0.5. We also compare these results to the geometrical predictions from Paper I that forecast an aspect ratio between 3 and 6. The geometrical solution varies with heliocentric distance and appears to provide a theoretical maximum for the aspect ratio of ICMEs. The minimum aspect ratio appears to remain constant at 1 (i.e., a circular cross section) for all distances. These results suggest that possible distortions to the leading edge of ICMEs are frequent. But, these results may also indicate that the constants calculated in the empirical relationship correlating the different shock front need to be modified; or perhaps both distortions and a change in the empirical formulae are required.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We extend recent work that included the effect of pressure forces to derive the precession rate of eccentric accretion discs in cataclysmic variables to the case of double degenerate systems. We find that the logical scaling of the pressure force in such systems results in predictions of unrealistically high primary masses. Using the prototype AM CVn as a calibrator for the magnitude of the effect, we find that there is no scaling that applies consistently to all the systems in the class. We discuss the reasons for the lack of a superhump period to mass ratio relationship analogous to that known for SU UMa systems and suggest that this is because these secondaries do not have a single valued mass-radius relationship. We highlight the unreliability of mass-ratios derived by applying the SU UMa expression to the AM CVn binaries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The distribution of dust in the ecliptic plane between 0.96 and 1.04 au has been inferred from impacts on the two Solar Terrestrial Relations Observatory (STEREO) spacecraft through observation of secondary particle trails and unexpected off-points in the heliospheric imager (HI) cameras. This study made use of analysis carried out by members of a distributed web-based citizen science project Solar Stormwatch. A comparison between observations of the brightest particle trails and a survey of fainter trails shows consistent distributions. While there is no obvious correlation between this distribution and the occurrence of individual meteor streams at Earth, there are some broad longitudinal features in these distributions that are also observed in sources of the sporadic meteor population. The different position of the HI instrument on the two STEREO spacecraft leads to each sampling different populations of dust particles. The asymmetry in the number of trails seen by each spacecraft and the fact that there are many more unexpected off-points in the HI-B than in HI-A indicates that the majority of impacts are coming from the apex direction. For impacts causing off-points in the HI-B camera, these dust particles are estimated to have masses in excess of 10−17 kg with radii exceeding 0.1 μm. For off-points observed in the HI-A images, which can only have been caused by particles travelling from the anti-apex direction, the distribution is consistent with that of secondary ‘storm’ trails observed by HI-B, providing evidence that these trails also result from impacts with primary particles from an anti-apex source. Investigating the mass distribution for the off-points of both HI-A and HI-B, it is apparent that the differential mass index of particles from the apex direction (causing off-points in HI-B) is consistently above 2. This indicates that the majority of the mass is within the smaller particles of this population. In contrast, the differential mass index of particles from the anti-apex direction (causing off-points in HI-A) is consistently below 2, indicating that the majority of the mass is to be found in larger particles of this distribution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present simultaneous multicolor infrared and optical photometry of the black hole X-ray transient XTE J1118+480 during its short 2005 January outburst, supported by simultaneous X-ray observations. The variability is dominated by short timescales, ~10 s, although a weak superhump also appears to be present in the optical. The optical rapid variations, at least, are well correlated with those in X-rays. Infrared JHKs photometry, as in the previous outburst, exhibits especially large-amplitude variability. The spectral energy distribution (SED) of the variable infrared component can be fitted with a power law of slope α=-0.78+/-0.07, where F_ν~ν^α. There is no compelling evidence for evolution in the slope over five nights, during which time the source brightness decayed along almost the same track as seen in variations within the nights. We conclude that both short-term variability and longer timescale fading are dominated by a single component of constant spectral shape. We cannot fit the SED of the IR variability with a credible thermal component, either optically thick or thin. This IR SED is, however, approximately consistent with optically thin synchrotron emission from a jet. These observations therefore provide indirect evidence to support jet-dominated models for XTE J1118+480 and also provide a direct measurement of the slope of the optically thin emission, which is impossible, based on the average spectral energy distribution alone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We review the theory and observations related to the "superhump" precession of eccentric accretion discs in close binary systems. We agree with earlier work, although for different reasons, that the discrepancy between observation and dynamical theory implies that the effect of pressure in the disc cannot be neglected. We extend earlier work that investigates this effect to include the correct expression for the radius at which resonant orbits occur. Using analytic expressions for the accretion disc structure, we derive a relationship between the period excess and mass ratio with the pressure effects included. This is compared to the observed data, recently derived results for detailed integration of the disc equations and the equivalent empirically derived relations and used to predict values for the mass ratio based on measured values of the period excess for 88 systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present optical and ultraviolet spectra, light curves, and Doppler tomograms of the low-mass X-ray binary EXO 0748-676. Using an extensive set of 15 emission-line tomograms, we show that, along with the usual emission from the stream and ``hot spot,'' there is extended nonaxisymmetric emission from the disk rim. Some of the emission and Hα and Hβ absorption features lend weight to the hypothesis that part of the stream overflows the disk rim and forms a two phase medium. The data are consistent with a 1.35 Msolar neutron star with a main-sequence companion and hence a mass ratio q~0.34.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present high time-resolution multiwavelength observations of X-ray bursts in the low-mass X-ray binary UY Vol. Strong reprocessed signals are present in the ultraviolet and optical, lagged and smeared with respect to the X-rays. The addition of far-ultraviolet coverage for one burst allows much tighter constraints on the temperature and geometry of the reprocessing region than previously possible. A blackbody reprocessing model for this burst suggests a rise in temperatures during the burst from 18,000 to 35,000 K and an emitting area comparable to that expected for the disk and/or irradiated companion star. The lags are consistent with those expected. The single-zone blackbody model cannot reproduce the ratio of optical to ultraviolet flux during the burst, however. The discrepancy seems too large to explain with deviations from a local blackbody spectrum and more likely indicates that a range of reprocessing temperatures are required. Comparable results are derived from other bursts, and in particular the lag and smearing both appear shorter when the companion star is on the near side of the disk as predicted. The burst observed by HST also yielded a spectrum of the reprocessed light. It is dominated by continuum, with a spectral shape consistent with the temperatures derived from lightcurve modeling. Taken as a whole, our observations confirm the standard paradigm of prompt reprocessing distributed across the disk and companion star, with the response dominated by a thermalized continuum rather than by emission lines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present results from 30 nights of observations of the open cluster NGC 7789 with the Wide Field Camera on the Isaac Newton Telescope, La Palma. From ~900 epochs, we obtained light curves and Sloan r'-i' colours for ~33000 stars, with ~2400 stars having better than 1 per cent precision. We expected to detect ~2 transiting hot Jupiter planets if 1 per cent of stars host such a companion and a typical hot Jupiter radius is ~1.2R_J. We find 24 transit candidates, 14 of which we can assign a period. We rule out the transiting planet model for 21 of these candidates using various robust arguments. For two candidates, we are unable to decide on their nature, although it seems most likely that they are eclipsing binaries as well. We have one candidate exhibiting a single eclipse, for which we derive a radius of 1.81+0.09-0.00R_J. Three candidates remain that require follow-up observations in order to determine their nature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We derive simple analytic expressions for the continuum light curves and spectra of flaring and flickering events that occur over a wide range of astrophysical systems. We compare these results to data taken from the cataclysmic variable SS Cygni and also from SN 1987A, deriving physical parameters for the material involved. Fits to the data indicate a nearly time-independent photospheric temperature arising from the strong temperature dependence of opacity when hydrogen is partially ionized.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We show that the observed K velocities and periodicities of AM CVn can be reconciled given a mass ratio q~0.22 and a secondary star with a modest magnetic field of surface strength B~1 T. We see that the new mass ratio implies that the secondary is most likely semidegenerate. The effect of the field on the accretion disc structure is examined. The theory of precessing discs and resonant orbits is generalized to encompass higher order resonances than 3:2 and shown to retain consistency with the new mass ratio.