58 resultados para Cell surface carbohydrates
Resumo:
The L-glutamate transporter GLT-1 is an abundant CNS membrane protein of the excitatory amino acid transporter (EAAT) family which controls extracellular L-glutamate levels and is important in limiting excitotoxic neuronal death. Using RT-PCR, we have determined that four mRNAs encoding GLT-1 exist in mouse brain, with the potential to encode four GLT-1 isoforms that differ in their N- and C-termini. We expressed all four isoforms (termed MAST-KREK, MPK-KREK, MAST-DIETCI and MPK-DIETCI according to amino acid sequence) in a range of cell lines and primary astrocytes and show that each isoform can reach the cell surface. In transfected HEK-293 or COS-7 cells, all four isoforms support high-affinity sodium-dependent L-glutamate uptake with identical pharmacological and kinetic properties. Inserting a viral epitope (V5, HA or FLAG) into the second extracellular domain of each isoform allowed co-immunoprecipitation and tr-FRET studies using transfected HEK-293 cells. Here we show for the first time that each of the four isoforms are able to combine to form homomeric and heteromeric assemblies, each of which are expressed at the cell surface of primary astrocytes. After activation of protein kinase C by phorbol ester, V5-tagged GLT-1 is rapidly removed from the cell surface of HEK-293 cells and degraded. This study provides direct biochemical evidence for oligomeric assembly of GLT-1 and reports the development of novel tools to provide insight into the trafficking of GLT-1.
Resumo:
The AMPA receptor (AMPAR) subunit GluR2, which regulates excitotoxicity and the inflammatory cytokine tumour necrosis factor alpha (TNF alpha) have both been implicated in motor neurone vulnerability in Amyotrophic Lateral Sclerosis/Motor Neurone Disease. TNF alpha has been reported to increase cell surface expression of AMPAR subunits to increase synaptic strength and enhance excitotoxicity, but whether this mechanism occurs in motor neurones is unknown. We used primary cultures of mouse motor neurones and cortical neurones to examine the interaction between TNF alpha receptor activation, GluR2 availability, AMPAR-mediated calcium entry and susceptibility to excitotoxicity. Short exposure to a physiologically relevant concentration of TNFalpha (10 ng/ml, 15 min) caused a marked redistribution of both GluR1 and GluR2 to the cell surface as determined by cell surface biotinylation and immunofluorescence. Using Fura-2 AM microfluorimetry we showed that exposure to TNFalpha caused a rapid reduction in the peak amplitude of AMPA-mediated calcium entry in a PI3-kinase and p38 kinase-dependent manner, consistent with increased insertion of GluR2-containing AMPAR into the plasma membrane. This resulted in a protection of motor neurones against kainate-induced cell death. Our data therefore, suggests that TNF alpha acts primarily as a physiological regulator of synaptic activity in motor neurones rather than a pathological drive in ALS
Resumo:
Differences in the expression of cell surface proteins between a normal prostate epithelial (1542-NP2TX) and a prostate cancer cell line (1542-CP3TX) derived from the same patient were investigated. A combination of affinity chromatographic purification of biotin-tagged surface proteins with mass spectrometry analysis identified 26 integral membrane proteins and 14 peripheral surface proteins. The findings confirm earlier reports of altered expression in prostate cancer for several cell surface proteins, including ALCAM/CD166, the Ephrin type A receptor, EGFR and the prostaglandin F2 receptor regulatory protein. In addition, several novel findings of differential expression were made, including the voltage-dependent anion selective channel proteins Porin 1 and 2, ecto-5'-nucleotidase (CD73) and Scavenger receptor B1. Cell surface protein expression changed both qualitatively and quantitatively when the cells were grown in the presence of either or both interferon INFalpha and INFgamma. Costimulation with type I and II interferons had additive or synergistic effects on the membrane density of several, mainly peripherally attached surface proteins. Concerted upregulation of surface exposed antigens may be of benefit in immuno-adjuvant-based treatment of interferon-responsive prostate cancer. In conclusion, this study demonstrates that differences in the expression of membrane proteins between normal and prostate cancer cells are reproducibly detectable following vectorial labelling with biotin, and that detailed analysis of extracellular-induced surface changes can be achieved by combining surface-specific labelling with high-resolution two-dimensional gel electrophoresis and mass spectrometry.
Resumo:
Differences in the expression of cell surface proteins between a normal prostate epithelial (1542-NP2TX) and a prostate cancer cell line (1542-CP3TX) derived from the same patient were investigated. A combination of affinity chromatographic purification of biotin-tagged surface proteins with mass spectrometry analysis identified 26 integral membrane proteins and 14 peripheral surface proteins. The findings confirm earlier reports of altered expression in prostate cancer for several cell surface proteins, including ALCAM/CD166, the Ephrin type A receptor, EGFR and the prostaglandin F2 receptor regulatory protein. In addition, several novel findings of differential expression were made, including the voltage-dependent anion selective channel proteins Porin 1 and 2, ecto-5'-nucleotidase (CD73) and Scavenger receptor B1. Cell surface protein expression changed both qualitatively and quantitatively when the cells were grown in the presence of either or both interferon INF alpha and INF gamma. Costimulation with type I and II interferons had additive or synergistic effects on the membrane density of several, mainly peripherally attached surface proteins. Concerted upregulation of surface exposed antigens may be of benefit in immuno-adjuvant-based treatment of interferon-responsive prostate cancer. In conclusion, this study demonstrates that differences in the expression of membrane proteins between normal and prostate cancer cells are reproducibly detectable following vectorial labelling with biotin, and that detailed analysis of extracellular-induced surface changes can be achieved by combining surface-specific labelling with high-resolution two-dimensional gel electrophoresis and mass spectrometry.
Resumo:
The thiol isomerase enzymes protein disulphide isomerase (PDI) and endoplasmic reticulum protein 5 (ERp5) are released by resting and activated platelets. These re-associate with the cell surface where they modulate a range of platelet responses including adhesion, secretion and aggregation. Recent studies suggest the existence of yet uncharacterised platelet thiol isomerase proteins. This study aimed to identify which other thiol isomerase enzymes are present in human platelets. Through the use of immunoblotting, flow cytometry, cell-surface biotinylation and gene array analysis, we report the presence of five additional thiol isomerases in human and mouse platelets and megakaryocytes, namely; ERp57, ERp72, ERp44, ERp29 and TMX3. ERp72, ERp57, ERp44 and ERp29 are released by platelets and relocate to the cell surface following platelet activation. The transmembrane thiol isomerase TMX3 was also detected on the platelet surface but does not increase following activation. Extracellular PDI is also implicated in the regulation of coagulation by the modulation of tissue factor activity. ERp57 was identified within platelet-derived microparticle fractions, suggesting that ERp57 may also be involved in the regulation of coagulation as well as platelet function. These data collectively implicate the expanding family of platelet-surface thiol isomerases in the regulation of haemostasis.
Resumo:
Certain extracellular proteases, derived from the circulation and inflammatory cells, can specifically cleave and trigger protease-activated receptors (PARs), a small, but important, sub-group of the G-protein-coupled receptor super-family. Four PARs have been cloned and they all share the same basic mechanism of activation: proteases cleave at a specific site within the extracellular N-terminus to expose a new N-terminal tethered ligand domain, which binds to and thereby activates the cleaved receptor. Thrombin activates PAR1, PAR3 and PAR4, trypsin activates PAR2 and PAR4, and mast cell tryptase activates PAR2 in this manner. Activated PARs couple to signalling cascades that affect cell shape, secretion, integrin activation, metabolic responses, transcriptional responses and cell motility. PARs are 'single-use' receptors: proteolytic activation is irreversible and the cleaved receptors are degraded in lysosomes. Thus, PARs play important roles in 'emergency situations', such as trauma and inflammation. The availability of selective agonists and antagonists of protease inhibitors and of genetic models has generated evidence to suggests that proteases and their receptors play important roles in coagulation, inflammation, pain, healing and protection. Therefore, selective antagonists or agonists of these receptors may be useful therapeutic agents for the treatment of human diseases.
Resumo:
For enveloped viruses, genome entry into the target cell involves two major steps: virion binding to the cell-surface receptor and fusion of the virion and cell membranes. Virus-cell membrane fusion is mediated by the virus envelope complex, and its fusogenicity is the result of an active virus-cell interaction process that induces conformation changes within the envelope. For some viruses, such as influenza, exposure to an acidic milieu within the cell during the early steps of infection triggers the necessary structural changes. However, for other pathogens which are not exposed to such environmental stress, activation of fusogenicity can result from precise thiol/disulfide rearrangements mediated by either an endogenous redox autocatalytic isomerase or a cell-associated oxidoreductase. Study of the activation of HIV envelope fusogenicity has revealed new knowledge about how redox changes within a viral envelope trigger fusion. We discuss these findings and their implication for anti-HIV therapy. In addition, to compare and contrast the situation outlined for HIV with an enveloped virus that can fuse with the cell plasma membrane independent of the redox status of its envelope protein, we review parallel data obtained on SARS coronavirus entry.
Resumo:
It is widely reported that cholera toxin (Ctx) remains a significant cause of gastrointestinal disease globally, particularly in developing countries where access to clean drinking water is at a premium. Vaccines are prohibitively expensive and have shown only short-term protection. Consequently, there is scope for continued development of novel treatment strategies. One example is the use of galactooligosaccharides (GOS) as functional mimics for the cell-surface toxin receptor (GM1). In this study, GOS fractions were fractionated using cation exchange chromatography followed by structural characterization using a combination of hydrophilic interaction liquid chromatography (HILIC) and electrospray ionization mass spectrometry (ESI-MS) such that their molecular weight profiles were known. Each profile was correlated against biological activity measured using a competitive inhibitory GM1-linked ELISA. GOS fractions containing > 5% hexasaccharides (DP6) exhibited > 90% binding, with EC50 values between 29.27 and 56.04 mg/mL. Inhibition by GOS DP6, was dose dependent, with an EC50 value of 5.10 mg/mL (5.15 mu M MW of 990 Da). In removing low molecular weight carbohydrates that do possess prebiotic, nutraceutical, and/or biological properties and concentrating GOS DP5 and/or DP6, Ctx antiadhesive activity per unit of (dry) weight was improved. This could be advantageous in the manufacture of pharmaceutical or nutraceutical formulations for the treatment or prevention of an acute or chronic disease associated with or caused by the adhesion and/or uptake of a Ctx or HLT.
Resumo:
The outer membrane usher protein Caf1A of the plague pathogen Yersinia pestis is responsible for the assembly of a major surface antigen, the F1 capsule. The F1 capsule is mainly formed by thin linear polymers of Caf1 (capsular antigen fraction 1) protein subunits. The Caf1A usher promotes polymerization of subunits and secretion of growing polymers to the cell surface. The usher monomer (811 aa, 90.5 kDa) consists of a large transmembrane β-barrel that forms a secretion channel and three soluble domains. The periplasmic N-terminal domain binds chaperone-subunit complexes supplying new subunits for the growing fiber. The middle domain, which is structurally similar to Caf1 and other fimbrial subunits, serves as a plug that regulates the permeability of the usher. Here we describe the identification, characterization, and crystal structure of the Caf1A usher C-terminal domain (Caf1A(C)). Caf1A(C) is shown to be a periplasmic domain with a seven-stranded β-barrel fold. Analysis of C-terminal truncation mutants of Caf1A demonstrated that the presence of Caf1A(C) is crucial for the function of the usher in vivo, but that it is not required for the initial binding of chaperone-subunit complexes to the usher. Two clusters of conserved hydrophobic residues on the surface of Caf1A(C) were found to be essential for the efficient assembly of surface polymers. These clusters are conserved between the FGL family and the FGS family of chaperone-usher systems.
Resumo:
Background: Thiol isomerases are a family of endoplasmic reticulum enzymes which orchestrate redox-based modifications of protein disulphide bonds. Previous studies have identified important roles for the thiol isomerases PDI and ERp5 in the regulation of normal platelet function. Objectives: Recently, we demonstrated the presence of a further five thiol isomerases at the platelet surface. In this report we aim to report the role of one of these enzymes - ERp57 in the regulation of platelet function. Methods/Results: Using enzyme activity function blocking antibodies, we demonstrate a role for ERp57 in platelet aggregation, dense granule secretion, fibrinogen binding, calcium mobilisation and thrombus formation under arterial conditions. In addition to the effects of ERp57 on isolated platelets, we observe the presence of ERp57 in the developing thrombus in vivo. Furthermore the inhibition of ERp57 function was found to reduce laser-injury induced arterial thrombus formation in a murine model of thrombosis. Conclusions: These data suggest that ERp57 is important for normal platelet function and opens up the possibility that the regulation of platelet function by a range of cell surface thiol isomerases may represent a broad paradigm for the regulation of haemostasis and thrombosis.
Resumo:
The insect baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) enters many mammalian cell lines, prompting its application as a general eukaryotic gene delivery agent, but the basis of entry is poorly understood. For adherent mammalian cells we show that entry is favoured by low pH and increasing the available cell surface area through transient release from the substratum. Low pH also stimulated baculovirus entry into mammalian cells grown in suspension which, optimally, could reach 90% of the transduced population. The basic loop, residues 268-281, of the viral surface glycoprotein gp64 was required for entry and a tetra mutant with increasing basicity increased entry into a range of mammalian cells. The same mutant failed to plaque in Sf9 cells, instead showing individual cell entry and minimal cell to cell spread, consistent with an altered fusion phenotype. Viruses grown in different insect cells showed different mammalian cell entry efficiencies suggesting additional factors also govern entry.
Resumo:
Type III secretion systems of enteric bacteria enable translocation of effector proteins into host cells. Secreted proteins of verotoxigenic Escherichia coli O157 strains include components of a translocation apparatus, EspA, -B, and -D, as well as "effectors" such as the translocated intimin receptor (Tir) and the mitochondrion-associated protein (Map). This research has investigated the regulation of LEE4 translocon proteins, in particular EspA. EspA filaments could not be detected on the bacterial cell surface when E. coli O157:H7 was cultured in M9 minimal medium but were expressed from only a proportion of the bacterial population when cultured in minimal essential medium modified with 25 mM HEPES. The highest proportions of EspA-filamented bacteria were detected in late exponential phase, after which filaments were lost rapidly from the bacterial cell surface. Our previous research had shown that human and bovine E. coli O157:H7 strains exhibit marked differences in EspD secretion levels. Here it is demonstrated that the proportion of the bacterial population expressing EspA filaments was associated with the level of EspD secretion. The ability of individual bacteria to express EspA filaments was not controlled at the level of LEE1-4 operon transcription, as demonstrated by using both beta-galactosidase and green fluorescent protein (GFP) promoter fusions. All bacteria, whether expressing EspA filaments or not, showed equivalent levels of GFP expression when LEEI-4 translational fusions were used. Despite this, the LEE4-espADB mRNA was more abundant from populations with a high proportion of nonsecreting bacteria (low secretors) than from populations with a high proportion of secreting and therefore filamented bacteria (high secretors). This research demonstrates that while specific environmental conditions are required to induce LEEI-4 expression, a further checkpoint exists before EspA filaments are produced on the bacterial surface and secretion of effector proteins occurs. This checkpoint in E. coli O157:H7 translocon expression is controlled by a posttranscriptional mechanism acting on LEE4-espADB mRNA. The heterogeneity in EspA filamentation could arise from phase-variable expression of regulators that control this posttranscriptional mechanism.
Resumo:
OBJECTIVE: Platelet endothelial cell adhesion molecule-1 (PECAM-1) regulates platelet response to multiple agonists. How this immunoreceptor tyrosine-based inhibitory motif-containing receptor inhibits G protein-coupled receptor-mediated thrombin-induced activation of platelets is unknown. APPROACH AND RESULTS: Here, we show that the activation of PECAM-1 inhibits fibrinogen binding to integrin αIIbβ3 and P-selectin surface expression in response to thrombin (0.1-3 U/mL) but not thrombin receptor-activating peptides SFLLRN (3×10(-7)-1×10(-5) mol/L) and GYPGQV (3×10(-6)-1×10(-4) mol/L). We hypothesized a role for PECAM-1 in reducing the tethering of thrombin to glycoprotein Ibα (GPIbα) on the platelet surface. We show that PECAM-1 signaling regulates the binding of fluorescein isothiocyanate-labeled thrombin to the platelet surface and reduces the levels of cell surface GPIbα by promoting its internalization, while concomitantly reducing the binding of platelets to von Willebrand factor under flow in vitro. PECAM-1-mediated internalization of GPIbα was reduced in the presence of both EGTA and cytochalasin D or latrunculin, but not either individually, and was reduced in mice in which tyrosines 747 and 759 of the cytoplasmic tail of β3 integrin were mutated to phenylalanine. Furthermore, PECAM-1 cross-linking led to a significant reduction in the phosphorylation of glycogen synthase kinase-3β Ser(9), but interestingly an increase in glycogen synthase kinase-3α pSer(21). PECAM-1-mediated internalization of GPIbα was reduced by inhibitors of dynamin (Dynasore) and glycogen synthase kinase-3 (CHIR99021), an effect that was enhanced in the presence of EGTA. CONCLUSIONS: PECAM-1 mediates internalization of GPIbα in platelets through dual AKT/protein kinase B/glycogen synthase kinase-3/dynamin-dependent and αIIbβ3-dependent mechanisms. These findings expand our understanding of how PECAM-1 regulates nonimmunoreceptor signaling pathways and helps to explains how PECAM-1 regulates thrombosis.
Resumo:
Rhizobium leguminosarum bv. viciae forms nitrogen-fixing nodules on several legumes, including pea (Pisum sativum) and vetch (Vicia cracca), and has been widely used as a model to study nodule biochemistry. To understand the complex biochemical and developmental changes undergone by R. leguminosarum bv. viciae during bacteroid development, microarray experiments were first performed with cultured bacteria grown on a variety of carbon substrates (glucose, pyruvate, succinate, inositol, acetate, and acetoacetate) and then compared to bacteroids. Bacteroid metabolism is essentially that of dicarboxylate-grown cells (i.e., induction of dicarboxylate transport, gluconeogenesis and alanine synthesis, and repression of sugar utilization). The decarboxylating arm of the tricarboxylic acid cycle is highly induced, as is gamma-aminobutyrate metabolism, particularly in bacteroids from early (7-day) nodules. To investigate bacteroid development, gene expression in bacteroids was analyzed at 7, 15, and 21 days postinoculation of peas. This revealed that bacterial rRNA isolated from pea, but not vetch, is extensively processed in mature bacteroids. In early development (7 days), there were large changes in the expression of regulators, exported and cell surface molecules, multidrug exporters, and heat and cold shock proteins. fix genes were induced early but continued to increase in mature bacteroids, while nif genes were induced strongly in older bacteroids. Mutation of 37 genes that were strongly upregulated in mature bacteroids revealed that none were essential for nitrogen fixation. However, screening of 3,072 mini-Tn5 mutants on peas revealed previously uncharacterized genes essential for nitrogen fixation. These encoded a potential magnesium transporter, an AAA domain protein, and proteins involved in cytochrome synthesis.
Resumo:
A mathematical model describing the uptake of low density lipoprotein (LDL) and very low density lipoprotein (VLDL) particles by a single hepatocyte cell is formulated and solved. The model includes a description of the dynamic change in receptor density on the surface of the cell due to the binding and dissociation of the lipoprotein particles, the subsequent internalisation of bound particles, receptors and unbound receptors, the recycling of receptors to the cell surface, cholesterol dependent de novo receptor formation by the cell and the effect that particle uptake has on the cell's overall cholesterol content. The effect that blocking access to LDL receptors by VLDL, or internalisation of VLDL particles containing different amounts of apolipoprotein E (we will refer to these particles as VLDL-2 and VLDL-3) has on LDL uptake is explored. By comparison with experimental data we find that measures of cell cholesterol content are important in differentiating between the mechanisms by which VLDL is thought to inhibit LDL uptake. We extend our work to show that in the presence of both types of VLDL particle (VLDL-2 and VLDL-3), measuring relative LDL uptake does not allow differentiation between the results of blocking and internalisation of each VLDL particle to be made. Instead by considering the intracellular cholesterol content it is found that internalisation of VLDL-2 and VLDL-3 leads to the highest intracellular cholesterol concentration. A sensitivity analysis of the model reveals that binding, unbinding and internalisation rates, the fraction of receptors recycled and the rate at which the cholesterol dependent free receptors are created by the cell have important implications for the overall uptake dynamics of either VLDL or LDL particles and subsequent intracellular cholesterol concentration. (C) 2008 Elsevier Ltd. All rights reserved.