84 resultados para Carcass lipid
Resumo:
Differences in whole-body lipid metabolism between men and women are indicated by lower-body fat accumulation in women but more marked accumulation of fat in the intra-abdominal visceral fat depots of men. Circulating blood lipid concentrations also show gender-related differences. These differences are most marked in premenopausal women, in whom total cholesterol, LDL-cholesterol and triacylglycerol concentrations are lower and HDL-cholesterol concentration is higher than in men. Tendency to accumulate body fat in intra-abdominal fat stores is linked to increased risk of CVD, metabolic syndrome, diabetes and other insulin-resistant states. Differential regional regulation of adipose tissue lipolysis and lipogenesis must underlie gender-related differences in the tendency to accumulate fat in specific fat depots. However, empirical data to support current hypotheses remain limited at the present time because of the demanding and specialist nature of the methods used to study adipose tissue metabolism in human subjects. In vitro and in vivo data show greater lipolytic sensitivity of abdominal subcutaneous fat and lesser lipolytic sensitivity of femoral and gluteal subcutaneous fat in women than in men. These differences appear to be due to fewer inhibitory alpha adrenergic receptors in abdominal regions and greater a adrenergic receptors in gluteal and femoral regions in women than in men. There do not appear to be major gender-related differences in rates of fatty acid uptake (lipogenesis) in different subcutaneous adipose tissue regions. In visceral fat rates of both lipolysis and lipogenesis appear to be greater in men than in women; higher rates of lipolysis may be due to fewer alpha adrenergic receptors in this fat depot in men. Fatty acid uptake into this depot in the postprandial period is approximately 7-fold higher in men than in women. Triacylglycerol concentrations appear to be a stronger cardiovascular risk factor in women than in men, with particular implications for cardiovascular risk in diabetic women. The increased triacylglycerol concentrations observed in women taking hormone-replacement therapy (HRT) may explain the paradoxical findings of increased rates of CVD in women taking HRT that have been reported from recent primary and secondary prevention trials of HRT.
Resumo:
Purpose of review Lipid rafts are potentially modifiable by diet, particularly (but not exclusively) by dietary fatty acids. This review examines the potential for dietary modification of raft structure and function in the immune system, brain and retinal tissue, the gut, and in cancer cells. Recent findings In-vitro and ex-vivo studies suggest that dietary n-3 polyunsaturated fatty acids (PUFAs) may exert immunosuppressive and anticancer effects through changes in lipid raft organization. In addition, gangliosides and cholesterol may modulate lipid raft organization in a number of tissues, and recent work has highlighted sphingolipids in membrane microdomains as potential targets for inhibition of tumor growth. The roles of fatty acids and gangliosides, especially in relation to lipid rafts, in cognitive development, age-related cognitive decline, psychiatric disorders, and Alzheimer’s disease are poorly understood and require further investigation. The roles of lipid rafts in cancer, in microbial pathogenesis, and in insulin resistance are starting to emerge, and indicate compelling evidence for the growing importance of membrane microdomains in health and disease. Summary In-vitro and animal studies show that n-3 PUFAs, cholesterol, and gangliosides modulate the structure and composition of lipid rafts, potentially influencing a wide range of biological processes, including immune function, neuronal signaling, cancer cell growth, entry of pathogens through the gut barrier, and insulin resistance in metabolic disorders. The physiological, clinical, and nutritional relevance of these observations remains to be determined.
Resumo:
The interactions have been investigated of puroindoline-a (Pin-a) and mixed protein systems of Pin-a and wild-type puroindoline-b (Pin-b+) or puroindoline-b mutants (G46S mutation (Pin bH) or W44R mutation (Pin-bS)) with condensed phase monolayers of an anionic phospholipid (L-α-dipalmitoylphosphatidyl-dl-glycerol (DPPG)) at the air/water interface. The interactions of the mixed systems were studied at three different concentration ratios of Pin-a:Pin-b, namely 3:1, 1:1 and 1:3 in order to establish any synergism in relation to lipid binding properties. Surface pressure measurements revealed that Pin-a interaction with DPPG monolayers led to an equilibrium surface pressure increase of 8.7 ± 0.6 mN m-1. This was less than was measured for Pin-a:Pin-b+ (9.6 to 13.4 mN m-1), but was significantly more than was measured for Pin-a:Pin-bH (4.0 to 6.2 mN m-1) or Pin-a:Pin-bS (3.8 to 6.3 mN m-1) over the complete range of concentration ratio. Consequently, surface pressure increases were shown to correlate to endosperm hardness phenotype, with puroindolines present in hard-textured wheat varieties yielding lower equilibrium surface pressure changes. Integrated amide I peak areas from corresponding external reflectance Fourier-transform infrared (ER-FTIR) spectra, used to indicate levels of protein adsorption to the lipid monolayers, showed that differences in adsorbed amount were less significant. The data therefore suggest that Pin-b mutants having single residue substitutions within their tryptophan-rich loop that are expressed in some hard-textured wheat varieties influence the degree of penetration of Pin-a and Pin-b into anionic phospholipid films. These findings highlight the key role of the tryptophan-rich loop in puroindoline-lipid interactions.
Resumo:
External reflectance Fourier transform infrared (ER-FTIR) spectroscopy and surface pressure measurements have been used to characterize the interaction of wild-type puroindoline-b (Pin-b) and two mutant forms featuring single residue substitutions-namely, Gly-46 to Ser-46 (Pin-bH) and Trp-44 to Arg-44 (Pin-bS)-with condensed-phase monolayers of zwitterionic (L-alpha-dipalmitoylphosphatidylcholine, DPPC) and anionic (L-alpha-dipalmitoylphosphatidyl-dl-glycerol, DPPG) phospholipids. The interaction with anionic DPPG monolayers, monitored by surface pressure isotherms, was influenced significantly by mutations in Pin-b (p < 0.05); wild-type Pin-b showed the highest surface pressure change of 10.6 +/- 1.0 mN m(-1), followed by Pin-bH (7.9 +/- 1.6 mN m(-1)) and Pin-bS (6.3 +/- 1.0 mN m(-1)), and the surface pressure isotherm kinetics were also different in each case. Integrated Amide I peak areas from corresponding ER-FTIR spectra confirmed the differences in adsorption kinetics, but also showed that differences in adsorbed amount were less significant, suggesting that mutations influence the degree of penetration into DPPG films. All Pin-b types showed evidence of interaction with DPPC films, detected as changes in surface pressure (5.6 +/- 1.1 mN m(-1)); however, no protein peaks were detected in the ER-FTIR spectra, which indicated that the interaction was via penetration with limited adsorption at the lipid/water interface. The expression of Pin-b mutants is linked to wheat endosperm hardness; therefore, the data presented here suggest that the lipid binding properties may be pivotal within the mechanism for this quality trait. In addition, the data suggest antimicrobial activities of Pin-b mutants would be lower than those of the wild-type Pin-b, because of decreased selectivity toward anionic phospholipids.
Resumo:
Advancing maturity of forage maize is associated with increases in the proportion of dry matter (DM) and starch, and decreases in the proportions of structural carbohydrates in the ensiled crop. This experiment investigated the effects of three maize silages of 291 (low), 339 (medium) and 393 (high) g DM per kg fresh weight on the performance of 48 Simmental. Holstein-Friesian cattle. Equal numbers of steers (mean start weight = 503 (s.d. 31.3) kg) and heifers (mean start weight = 378 (s.d. 11.2) kg) were offered individually isonitrogenous diets composed of the three silages plus a protein supplement with minerals once daily until slaughter at the target live weight of 575 and 475 kg for steers and heifers, respectively. Intake was reduced on the low diet (P < 0.01) compared with the other two treatments. Dietary starch intake increased by a total of 1 kg/day between low and medium diets but by only 0.2 kg/day between medium and high diets. Unlike starch intake, total neutral-detergent fibre intake showed no significant difference (P > 0.05) between diets. There were no differences in live-weight gain between treatments but differences (P < 0.05) in food conversion efficiency indicated relative gains of 115, 100 and 102 g gain per kg DM intake for diets low, medium and high, respectively. There were no differences between diets in carcass weights, fat score and overall conformation.
Resumo:
LDL oxidation may be important in atherosclerosis. Extensive oxidation of LDL by copper induces increased uptake by macrophages, but results in decomposition of hydroperoxides, making it more difficult to investigate the effects of hydroperoxides in oxidised LDL on cell function. We describe here a simple method of oxidising LDL by dialysis against copper ions at 4 degrees C, which inhibits the decomposition of hydroperoxides, and allows the production of LDL rich in hydroperoxides (626 +/- 98 nmol/mg LDL protein) but low in oxysterols (3 +/- 1 nmol 7-ketocholesterol/mg LDL protein), whilst allowing sufficient modification (2.6 +/- 0.5 relative electrophoretic mobility) for rapid uptake by macrophages (5.49 +/- 0.75 mu g I-125-labelled hydroperoxide-rich LDL vs. 0.46 +/- 0.04 mu g protein/mg cell protein in 18 h for native LDL). By dialysing under the same conditions, but at 37 degrees C, the hydroperoxides are decomposed extensively and the LDL becomes rich in oxysterols. This novel method of oxidising LDL with high yield to either a hydroperoxide- or oxysterol-rich form by simply altering the temperature of dialysis may provide a useful tool for determining the effects of these different oxidation products on cell function. (C) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Apolipoprotein L1 in plasma is associated with high- density lipoprotein. Novel APOL1 polymorphisms are investigated along with the association of two common haplotypes (Lys166Glu, Ile244Met, Lys271Arg) with circulating lipid and glucose levels. Although the amino acid substitutions occur in the amphipathic alpha helices region involved in lipid binding, these substitutions were found not to independently account for variability in circulating lipid and glucose levels in 149 middle age males.
Resumo:
In this work we study the colloidal osmotic pressure (COP) and aggregate shape in phosphate saline buffer solutions (PH 7.4) containing bovine serum albumin (BSA), poly(ethylene glycol) lipid (PEG(2000)-PE) and Dextran (Dx). Dx was added to the BSA/PEG(2000)-PE system in order to increase the COP of the solution to levels comparable to the COP of healthy adults, with the aim of using the solution as a blood COP regulator. Dynamic light scattering and small angle X-ray scattering results shown the formation of BSA/PEG(2000)-PE/Dx aggregates in the solution. Osmometry results shown that the addition of Dx to the BSA/PE2000-PE system could successfully increase the COP, through the formation of BSA/PEG(2000)-PE/Dx aggregates. The BSA/PEG(2000)-PE/Dx solutions attained COP= 15 mm Hg, representing 60% of COP measured for healthy adults. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this work we report the structural characteristics of bovine serum albumin/poly(ethylene glycol) lipid conjugate (BSA/PEG(2000)-PE) complexes under physiological conditions (37 degrees C and pH 7.4) for particular fractions of BSA to PEG-lipid concentration, CBSA/C-PEG2000-PE. Ultraviolet fluorescence spectroscopy (UV) results shown that PEG(2000)-PE is associated to BSA, leading to;protein unfolding for fixed C-BSA = 0.01 wt % and variable C-PEG2000-PE = 0.0015-0.6 wt %. Tryptophan groups on the BSA surface are in contact with the PEG-lipid at C-PEG2000-PE = 0.0015 wt %, while they are exposed to water at C-PEG2000-PE (>)0.0015 wt %. Dynamic and static light scattering (DLS and SLS) and small-angle neutron scattering (SANS) point out the existence of individual BSAIPEG-lipid complexes in the system for fixed C-BSA = 1 wt % and variable C-PEG2000-PE = 0.15-2 wt %. DLS shows that there is only one BSA molecule per protein/PEG-lipid complex, while SLS shows that the PEG-lipid associates to the BSA without promoting aggregation between adjacent protein/ polymer-lipid conjugate complexes. SANS was used to show that BSA/PEG(2000)-PE complexes adopt an oblate ellipsoidal shape. Partially unfolded BSA is contained in the core of the oblate ellipsoid, which is surrounded by an external shell containing the PEG(2000)-PE.
Resumo:
The structure, size, stability, and functionality of lipid rafts are still in debate, but recent techniques allowing direct visualization have characterized them in a wide range of cell types. Lipid rafts are potentially modifiable by diet, particularly (but not exclusively) by dietary fatty acids. However, it is not clear whether dietary polyunsaturated fatty acids (PUFAs) are incorporated into raft lipids or whether their low affinity to cholesterol disallows this and causes phase separation from rafts and displacement of raft proteins. This review examines the potential for dietary modification of raft structure and function in the immune system, brain and retinal tissue, the gut, and in cancer cells. Although there is increasing evidence to suggest that membrane microdomains, and their modulation, have an impact in health and disease, it is too early to judge whether modulation of lipid rafts is responsible for the immunomodulatory effects of n-3 PUFA. In addition to dietary fatty acids, gangliosides and cholesterol may also modulate microdomains in a number of tissues, and recent work has highlighted sphingolipids in membrane microdomains as potential targets for inhibition of tumor growth by n-3 PUFA. The roles of fatty acids and gangliosides in cognitive development, age-related cognitive decline, psychiatric disorders, and Alzheimer's disease are poorly understood and require clarification, particularly with respect to the contribution of lipid rafts. The roles of lipid rafts in cancer, in microbial pathogenesis, and in insulin resistance are only just emerging, but compelling evidence indicates the growing importance of membrane microdomains in health and disease.
Resumo:
Background: Interest in the development of dairy products naturally enriched in conjugated linoleic acid (CLA) exists. However, feeding regimens that enhance the CLA content of milk also increase concentrations of trans-18:1 fatty acids. The implications for human health are not yet known. Objective: This study investigated the effects of consuming dairy products naturally enriched in cis-9,trans-11 CLA (and trans-11 18:1) on the blood lipid profile, the atherogenicity of LDL, and markers of inflammation and insulin resistance in healthy middle-aged men. Design: Healthy middle-aged men (n = 32) consumed ultra-heat-treated milk, butter, and cheese that provided 0.151 g/d (control) or 1.421 g/d (modified) cis-9,trans-11 CLA for 6 wk. This was followed by a 7-wk washout and a crossover to the other treatment. Results: Consumption of dairy products enriched with cis-9,trans-11 CLA and trans-11 18:1 did not significantly affect body weight, inflammatory markers, insulin, glucose, triacylglycerols, or total, LDL, and HDL cholesterol but resulted in a small increase in the ratio of LDL to HDL cholesterol. The modified dairy products changed LDL fatty acid composition but had no significant effect on LDL particle size or the susceptibility of LDL to oxidation. Overall, increased consumption of full-fat dairy products and naturally derived trans fatty acids did not cause significant changes in cardiovascular disease risk variables, as may be expected on the basis of current health recommendations. Conclusion: Dairy products naturally enriched with cis-9,trans-11 CLA and trans-11 18: 1 do not appear to have a significant effect on the blood lipid profile.
Resumo:
We have studied 'food grade' sialyloligosaccharides (SOS) as anti-adhesive drugs or receptor analogues, since the terminal sialic acid residue has already been shown to contribute significantly to the adhesion and pathogenesis of the Vibrio cholerae toxin (Ctx). GM1-oligosaccharide (GM1-OS) was immobilized into a supporting POPC lipid bilayer onto a surface plasmon resonance (SPR) chip, and the interaction between uninhibited Ctx and GM1-OS-POPC was measured. SOS inhibited 94.7% of the Ctx binding to GM1-OS-POPC at 10 mg/mL. The SOS EC50 value of 5.521 mg/mL is high compared with 0.2811 mu g/mL (182.5 pM or 1.825 x 10(-10) M) for GM1-OS. The commercially available sialyloligosaccharide (SOS) mixture Sunsial E (R) is impure, containing one monosialylated and two disialylated oligosaccharides in the ratio 9.6%. 6.5% and 17.5%, respectively, and 66.4% protein. However, these inexpensive food-grade molecules are derived from egg yolk and could be used to fortify conventional food additives, by way of emulsifiers, sweeteners and/or preservatives. The work further supports our hypothesis that SOS could be a promising natural anti-adhesive glycomimetic against Ctx and prevent subsequent onset of disease. (C) 2009 Elsevier Ltd. All rights reserved
Resumo:
The objective of this article is to review existing studies concerning the effects of probiotics and prebiotics on serum cholesterol concentrations, with particular attention on the possible mechanisms of their action. Although not without exception, results from animal and human studies suggest a moderate cholesterol-lowering action of dairy products fermented with appropriate strain(s) of lactic acid bacteria and bifidobacteria. Mechanistically, probiotic bacteria ferment food-derived indigestible carbohydrates to produce short-chain fatty acids in the gut, which can then cause a decrease in the systemic levels of blood lipids by inhibiting hepatic cholesterol synthesis and/or redistributing cholesterol from plasma to the liver. Furthermore, some bacteria may interfere with cholesterol absorption from the gut by deconjugating bile salts and therefore affecting the metabolism of cholesterol, or by directly assimilating cholesterol. For prebiotic substances, the majority of studies have been done with the fructooligosaccharides inulin and oligofructose, and although convincing lipid-lowering effects have been observed in animals, high dose levels had to be used. Reports in humans are few in number. In studies conducted in normal-lipidemic subjects, two reported no effect of inulin or oligofructose on serum lipids, whereas two others reported a significant reduction in serum triglycerides (19 and 27%, respectively) with more modest changes in serum total and LDL cholesterol. At present, data suggest that in hyperlipidemic subjects, any effects that do occur result primarily in reductions in cholesterol, whereas in normal lipidemic subjects, effects on serum triglycerides are the dominant feature.