75 resultados para Capital budget
Resumo:
This paper seeks to analyse and discuss, from the perspective of the owners of agricultural land, the main changes to the Capital Gains Tax regime introduced in the Budget of March 1998 and contained in the Finance Act 1998. The immediate replacement of indexation with a new Taper relief is examined, along with the phasing out of Retirement relief, and the interaction of Taper relief with Rollover relief.
Resumo:
The Geostationary Earth Radiation Budget instrument on Meteosat-8, located over Africa, provides unprecedented temporal sampling (~17 minutes) of the broadband emitted thermal and reflected solar radiances. We analyse the diurnal cycle of the outgoing longwave radiation (OLR) fluxes derived from the thermal radiances for July 2006. Principal component (PC) analysis separates the signals of the surface temperature response to solar heating and of the development of convective clouds. The first two PCs explain most of the OLR variations: PC1 (surface heating) explains 82.3% of the total variance and PC2 (cloud development) explains 12.8% of the variance. Convection is initiated preferentially over mountainous regions and the cloud then advects downstream in the ambient flow. Diurnal variations are much weaker over the oceans, but a coherent signal over the Gulf of Guinea suggests that the cloudiness is modulated by the diurnally varying contrast between the Gulf and the adjacent land mass.
Resumo:
Simulations of the top-of-atmosphere radiative-energy budget from the Met Office global numerical weather-prediction model are evaluated using new data from the Geostationary Earth Radiation Budget (GERB) instrument on board the Meteosat-8 satellite. Systematic discrepancies between the model simulations and GERB measurements greater than 20 Wm-2 in outgoing long-wave radiation (OLR) and greater than 60 Wm-2 in reflected short-wave radiation (RSR) are identified over the period April-September 2006 using 12 UTC data. Convective cloud over equatorial Africa is spatially less organized and less reflective than in the GERB data. This bias depends strongly on convective-cloud cover, which is highly sensitive to changes in the model convective parametrization. Underestimates in model OLR over the Gulf of Guinea coincide with unrealistic southerly cloud outflow from convective centres to the north. Large overestimates in model RSR over the subtropical ocean, greater than 50 Wm-2 at 12 UTC, are explained by unrealistic radiative properties of low-level cloud relating to overestimation of cloud liquid water compared with independent satellite measurements. The results of this analysis contribute to the development and improvement of parametrizations in the global forecast model.
Resumo:
In the Radiative Atmospheric Divergence Using ARM Mobile Facility GERB and AMMA Stations (RADAGAST) project we calculate the divergence of radiative flux across the atmosphere by comparing fluxes measured at each end of an atmospheric column above Niamey, in the African Sahel region. The combination of broadband flux measurements from geostationary orbit and the deployment for over 12 months of a comprehensive suite of active and passive instrumentation at the surface eliminates a number of sampling issues that could otherwise affect divergence calculations of this sort. However, one sampling issue that challenges the project is the fact that the surface flux data are essentially measurements made at a point, while the top-of-atmosphere values are taken over a solid angle that corresponds to an area at the surface of some 2500 km2. Variability of cloud cover and aerosol loading in the atmosphere mean that the downwelling fluxes, even when averaged over a day, will not be an exact match to the area-averaged value over that larger area, although we might expect that it is an unbiased estimate thereof. The heterogeneity of the surface, for example, fixed variations in albedo, further means that there is a likely systematic difference in the corresponding upwelling fluxes. In this paper we characterize and quantify this spatial sampling problem. We bound the root-mean-square error in the downwelling fluxes by exploiting a second set of surface flux measurements from a site that was run in parallel with the main deployment. The differences in the two sets of fluxes lead us to an upper bound to the sampling uncertainty, and their correlation leads to another which is probably optimistic as it requires certain other conditions to be met. For the upwelling fluxes we use data products from a number of satellite instruments to characterize the relevant heterogeneities and so estimate the systematic effects that arise from the flux measurements having to be taken at a single point. The sampling uncertainties vary with the season, being higher during the monsoon period. We find that the sampling errors for the daily average flux are small for the shortwave irradiance, generally less than 5 W m−2, under relatively clear skies, but these increase to about 10 W m−2 during the monsoon. For the upwelling fluxes, again taking daily averages, systematic errors are of order 10 W m−2 as a result of albedo variability. The uncertainty on the longwave component of the surface radiation budget is smaller than that on the shortwave component, in all conditions, but a bias of 4 W m−2 is calculated to exist in the surface leaving longwave flux.
Resumo:
The radiation budget simulated by the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year reanalysis (ERA40) is evaluated for the period 1979–2001 using independent satellite data and additional model data. This provides information on the quality of the radiation products and indirect evaluation of other aspects of the climate produced by ERA40. The climatology of clear-sky outgoing longwave radiation (OLR) is well captured by ERA40. Underestimations of about 10 W m−2 in clear-sky OLR over tropical convective regions by ERA40 compared to satellite data are substantially reduced when the satellite sampling is taken into account. The climatology of column-integrated water vapor is well simulated by ERA40 compared to satellite data over the ocean, indicating that the simulation of downward clear-sky longwave fluxes at the surface is likely to be good. Clear-sky absorbed solar radiation (ASR) and clear-sky OLR are overestimated by ERA40 over north Africa and high-latitude land regions. The observed interannual changes in low-latitude means are not well reproduced. Using ERA40 to analyze trends and climate feedbacks globally is therefore not recommended. The all-sky radiation budget is poorly simulated by ERA40. OLR is overestimated by around 10 W m−2 over much of the globe. ASR is underestimated by around 30 W m−2 over tropical ocean regions. Away from marine stratocumulus regions, where cloud fraction is underestimated by ERA40, the poor radiation simulation by ERA40 appears to be related to inaccurate radiative properties of cloud rather than inaccurate cloud distributions.
Resumo:
We describe a new methodology for comparing satellite radiation budget data with a numerical weather prediction (NWP) model. This is applied to data from the Geostationary Earth Radiation Budget (GERB) instrument on Meteosat-8. The methodology brings together, in near-real time, GERB broadband shortwave and longwave fluxes with simulations based on analyses produced by the Met Office global NWP model. Results for the period May 2003 to February 2005 illustrate the progressive improvements in the data products as various initial problems were resolved. In most areas the comparisons reveal systematic errors in the model's representation of surface properties and clouds, which are discussed elsewhere. However, for clear-sky regions over the oceans the model simulations are believed to be sufficiently accurate to allow the quality of the GERB fluxes themselves to be assessed and any changes in time of the performance of the instrument to be identified. Using model and radiosonde profiles of temperature and humidity as input to a single-column version of the model's radiation code, we conduct sensitivity experiments which provide estimates of the expected model errors over the ocean of about ±5–10 W m−2 in clear-sky outgoing longwave radiation (OLR) and ±0.01 in clear-sky albedo. For the more recent data the differences between the observed and modeled OLR and albedo are well within these error estimates. The close agreement between the observed and modeled values, particularly for the most recent period, illustrates the value of the methodology. It also contributes to the validation of the GERB products and increases confidence in the quality of the data, prior to their release.
Resumo:
This paper reports on a new satellite sensor, the Geostationary Earth Radiation Budget (GERB) experiment. GERB is designed to make the first measurements of the Earth's radiation budget from geostationary orbit. Measurements at high absolute accuracy of the reflected sunlight from the Earth, and the thermal radiation emitted by the Earth are made every 15 min, with a spatial resolution at the subsatellite point of 44.6 km (north–south) by 39.3 km (east–west). With knowledge of the incoming solar constant, this gives the primary forcing and response components of the top-of-atmosphere radiation. The first GERB instrument is an instrument of opportunity on Meteosat-8, a new spin-stabilized spacecraft platform also carrying the Spinning Enhanced Visible and Infrared (SEVIRI) sensor, which is currently positioned over the equator at 3.5°W. This overview of the project includes a description of the instrument design and its preflight and in-flight calibration. An evaluation of the instrument performance after its first year in orbit, including comparisons with data from the Clouds and the Earth's Radiant Energy System (CERES) satellite sensors and with output from numerical models, are also presented. After a brief summary of the data processing system and data products, some of the scientific studies that are being undertaken using these early data are described. This marks the beginning of a decade or more of observations from GERB, as subsequent models will fly on each of the four Meteosat Second Generation satellites.
Resumo:
The entropy budget is calculated of the coupled atmosphere–ocean general circulation model HadCM3. Estimates of the different entropy sources and sinks of the climate system are obtained directly from the diabatic heating terms, and an approximate estimate of the planetary entropy production is also provided. The rate of material entropy production of the climate system is found to be ∼50 mW m−2 K−1, a value intermediate in the range 30–70 mW m−2 K−1 previously reported from different models. The largest part of this is due to sensible and latent heat transport (∼38 mW m−2 K−1). Another 13 mW m−2 K−1 is due to dissipation of kinetic energy in the atmosphere by friction and Reynolds stresses. Numerical entropy production in the atmosphere dynamical core is found to be about 0.7 mW m−2 K−1. The material entropy production within the ocean due to turbulent mixing is ∼1 mW m−2 K−1, a very small contribution to the material entropy production of the climate system. The rate of change of entropy of the model climate system is about 1 mW m−2 K−1 or less, which is comparable with the typical size of the fluctuations of the entropy sources due to interannual variability, and a more accurate closure of the budget than achieved by previous analyses. Results are similar for FAMOUS, which has a lower spatial resolution but similar formulation to HadCM3, while more substantial differences are found with respect to other models, suggesting that the formulation of the model has an important influence on the climate entropy budget. Since this is the first diagnosis of the entropy budget in a climate model of the type and complexity used for projection of twenty-first century climate change, it would be valuable if similar analyses were carried out for other such models.
Resumo:
This paper reopens debates of geographic theorizations and conceptualizations of social capital. I argue that human geographers have tended to underplay the analytic value of social capital, by equating the concept with dominant policy interpretations. It is contended that geographers could more explicitly contribute to pervasive critical social science accounts. With this in mind, an embodied perspective of social capital is constructed. This synthesizes Bourdieu's capitals and performative theorizations of identity, to progress the concept of social capital in four key ways. First, this theorization more fully reconnects embodied differences to broader socioeconomic processes. Second, an exploration of how embodied social differences can emerge directly from the political-economy and/or via broader operations of power is facilitated. Third, a path is charted through the endurance of embodied inequalities and the potential for social transformation. Finally, embodied social capital can advance social science conceptualizations of the spatiality of social capital, by illuminating the importance of broader sociospatial contexts and relations to the embodiment of social capital within individuals.
Resumo:
Under the bond scheme, a pre-determined series of payments would compensate farmers for lost revenues resulting from policy change. Unlike the Single Payment Scheme, payments would be fully decoupled: recipients would not have to retain farmland, or remain in agriculture. If vested in a paper asset, the guaranteed, unencumbered, income stream would be similar to that from a government bond. Recipients could exchange this for a capital sum reflecting the net present value of future payments, and reinvest in other business ventures, either on- or offfarm.With a finite, declining flow of payments, budget expenditure would reduce, releasing funds for other uses.
Resumo:
Using topographic data collected by radar interferometry, stereo-photogrammetry, and field survey we have measured the changing surface of Volcan Arenal in Costa Rica over the period from 1980 to 2004. During this time this young volcano has mainly effused basaltic andesite lava, continuing the activity that began in 1968. Explosive products form only a few percent of the volumetric output. We have calculated digital elevation models for the years 1961, 1988 and 1997 and modified existing models for 2000 and 2004. From these we have estimated the volume of lava effused and coupled this with the data presented by an earlier study for 1968-1980. We find that a dense rock equivalent volume of 551 M m(3) was effused from 1968 to 2004. The dense rock equivalent effusion rate fell from about 2 m(3) s(-1) to about 0.1-0.2 m(3) s(-1) over the same period, with an average rate of about 0.5 m(3) s(-1). Between 1980 and 2004, the average effusion rate was 0.36 m(3) s(-1), a similar rate to that measured between 1974 and 1980. There have been two significant deviations from this long-term rate. The effusion rate increased from 1984 to 1991, at the same time as explosivity increased. After a period of moderate effusion rates in the 1990s, the rate fell to lower levels around 1999. (c) 2006 Elsevier B.V. All rights reserved.