17 resultados para CHARGED CYCLODEXTRIN


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multiple factor parametrization is described to permit the efficient calculation of collision efficiency (E) between electrically charged aerosol particles and neutral cloud droplets in numerical models of cloud and climate. The four-parameter representation summarizes the results obtained from a detailed microphysical model of E, which accounts for the different forces acting on the aerosol in the path of falling cloud droplets. The parametrization's range of validity is for aerosol particle radii of 0.4 to 10 mu m, aerosol particle densities of I to 2.0 g cm(-3), aerosol particle charges from neutral to 100 elementary charges and drop radii from 18.55 to 142 mu m. The parametrization yields values of E well within an order of magnitude of the detailed model's values, from a dataset of 3978 E values. Of these values 95% have modelled to parametrized ratios between 0.5 and 1.5 for aerosol particle sizes ranging between 0.4 and 2.0 mu m, and about 96% in the second size range. This parametrization speeds up the calculation of E by a factor of similar to 10(3) compared with the original microphysical model, permitting the inclusion of electric charge effects in numerical cloud and climate models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transport and deposition of charged inhaled aerosols in double planar bifurcation representing generation three to five of human respiratory system has been studied under a light activity breathing condition. Both steady and oscillatory laminar inhalation airflow is considered. Particle trajectories are calculated using a Lagrangian reference frame, which is dominated by the fluid force driven by airflow, gravity force and electrostatic forces (both of space and image charge forces). The particle-mesh method is selected to calculate the space charge force. This numerical study investigates the deposition efficiency in the three-dimensional model under various particle sizes, charge values, and inlet particle distribution. Numerical results indicate that particles carrying an adequate level of charge can improve deposition efficiency in the airway model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new numerical modeling of inhaled charge aerosol has been developed based on a modified Weibel's model. Both the velocity profiles (slug and parabolic flows) and the particle distributions (uniform and parabolic distributions) have been considered. Inhaled particles are modeled as a dilute dispersed phase flow in which the particle motion is controlled by fluid force and external forces acting on particles. This numerical study extends the previous numerical studies by considering both space- and image-charge forces. Because of the complex computation of interacting forces due to space-charge effect, the particle-mesh (PM) method is selected to calculate these forces. In the PM technique, the charges of all particles are assigned to the space-charge field mesh, for calculating charge density. The Poisson's equation of the electrostatic potential is then solved, and the electrostatic force acting on individual particle is interpolated. It is assumed that there is no effect of humidity on charged particles. The results show that many significant factors also affect the deposition, such as the volume of particle cloud, the velocity profile and the particle distribution. This study allows a better understanding of electrostatic mechanism of aerosol transport and deposition in human airways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A peptide amphiphile (PA) C16-KTTKS, containing a pentapeptide headgroup based on a sequence from procollagen I attached to a hexadecyl lipid chain, self-assembles into extended nanotapes in aqueous solution. The tapes are based on bilayer structures, with a 5.2 nm spacing. Here, we investigate the effect of addition of the oppositely charged anionic surfactant sodium dodecyl sulfate (SDS) via AFM, electron microscopic methods, small-angle X-ray scattering and X-ray diffraction among other methods. We show that addition of SDS leads to a transition from tapes to fibrils, via intermediate states that include twisted ribbons. Addition of SDS is also shown to enhance the development of remarkable lateral ‘‘stripes’’ on the nanostructures, which have a 4 nm periodicity. This is ascribed to counterion condensation. The transition in the nanostructure leads to changes in macroscopic properties, in particular a transition from sol to gel is noted on increasing SDS (with a further reentrant transition to sol on further increase of SDS concentration). Formation of a gel may be useful in applications of this PA in skincare applications and we show that this can be controlled via development of a network of fine stranded fibrils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In biological mass spectrometry (MS), two ionization techniques are predominantly employed for the analysis of larger biomolecules, such as polypeptides. These are nano-electrospray ionization [1, 2] (nanoESI) and matrix-assisted laser desorption/ionization [3, 4] (MALDI). Both techniques are considered to be “soft”, allowing the desorption and ionization of intact molecular analyte species and thus their successful mass-spectrometric analysis. One of the main differences between these two ionization techniques lies in their ability to produce multiply charged ions. MALDI typically generates singly charged peptide ions whereas nanoESI easily provides multiply charged ions, even for peptides as low as 1000 Da in mass. The production of highly charged ions is desirable as this allows the use of mass analyzers, such as ion traps (including orbitraps) and hybrid quadrupole instruments, which typically offer only a limited m/z range (< 2000–4000). It also enables more informative fragmentation spectra using techniques such as collisioninduced dissociation (CID) and electron capture/transfer dissociation (ECD/ETD) in combination with tandem MS (MS/MS). [5, 6] Thus, there is a clear advantage of using ESI in research areas where peptide sequencing, or in general, the structural elucidation of biomolecules by MS/MS is required. Nonetheless, MALDI with its higher tolerance to contaminants and additives, ease-of-operation, potential for highspeed and automated sample preparation and analysis as well as its MS imaging capabilities makes it an ionization technique that can cover bioanalytical areas for which ESI is less suitable. [7, 8] If these strengths could be combined with the analytical power of multiply charged ions, new instrumental configurations and large-scale proteomic analyses based on MALDI MS(/MS) would become feasible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of complexes in solutions of oppositely charged polyions has been studied by Monte Carlo simulations. The amount as well as the length, and thus, the absolute charge of one of the polyions have been varied. There is an increasing tendency to form large clusters as the excess of one kind of polyion decreases. When all polyions have the same length, this tendency reaches a maximum near, but off, equivalent amounts of the two types of polyions. When one kind of polyion is made shorter, the propensity to form large clusters decreases and the fluctuations in cluster charge increases. Simple free-energy expressions have been formulated on the basis of a set of simple rules that help rationalize the observations. By calculating cluster distributions in both grand canonical and canonical ensembles, it has been possible to show the extent of finite-size effects in the simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of complexes in solutions containing positively charged polyions (polycations) and a variable amount of negatively charged polyions (polyanions) has been investigated by Monte Carlo simulations. The polyions were described as flexible chains of charged hard spheres interacting through a screened Coulomb potential. The systems were analyzed in terms of cluster compositions, structure factors, and radial distribution functions. At 50% charge equivalence or less, complexes involving two polycations and one polyanion were frequent, while closer to charge equivalence, larger clusters were formed. Small and neutral complexes dominated the solution at charge equivalence in a monodisperse system, while larger clusters again dominated the solution when the polyions were made polydisperse. The cluster composition and solution structure were also examined as functions of added salt by varying the electrostatic screening length. The observed formation of clusters could be rationalized by a few simple rules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of complexes appearing in solutions containing oppositely charged polyelectrolytes has been investigated by Monte Carlo simulations using two different models. The polyions are described as flexible chains of 20 connected charged hard spheres immersed in a homogenous dielectric background representing water. The small ions are either explicitly included or their effect described by using a screened Coulomb potential. The simulated solutions contained 10 positively charged polyions with 0, 2, or 5 negatively charged polyions and the respective counterions. Two different linear charge densities were considered, and structure factors, radial distribution functions, and polyion extensions were determined. A redistribution of positively charged polyions involving strong complexes formed between the oppositely charged polyions appeared as the number of negatively charged polyions was increased. The nature of the complexes was found to depend on the linear charge density of the chains. The simplified model involving the screened Coulomb potential gave qualitatively similar results as the model with explicit small ions. Finally, owing to the complex formation, the sampling in configurational space is nontrivial, and the efficiency of different trial moves was examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclodextrins are water-soluble cyclic oligosaccharides consisting of six, seven, and eight α-(1,4)-linked glucopyranose subunits. This study reports the use of different cyclodextrins in eye drop formulations to improve the aqueous solubility and corneal permeability of riboflavin. Riboflavin is a poorly soluble drug with a solubility up to 0.08 mg mL–1 in deionized water. It is used as a drug topically administered to the eye to mediate UV-induced corneal cross-linking in the treatment of keratoconus. Aqueous solutions of β-cyclodextrin (10–30 mg mL–1) can enhance the solubility of riboflavin up to 0.12–0.19 mg mL–1, whereas the higher concentration of α-cyclodextrin (100 mg mL–1) achieved a lower level of enhancement of 0.11 mg mL–1. The other oligosaccharides were found to be inefficient for this purpose. In vitro diffusion experiments performed with fresh and cryopreserved bovine cornea have demonstrated that β-cyclodextrin enhances riboflavin permeability. The mechanism of this enhancement was examined through microscopic histological analysis of the cornea and is discussed in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-assembly in water of designed peptide amphiphile (PA) C16-ETTES containing two anionic residues and its mixtures with C16-KTTKS containing two cationic residues has been investigated. Multiple spectroscopy, microscopy, and scattering techniques are used to examine ordering extending from the β-sheet structures up to the fibrillar aggregate structure. The peptide amphiphiles both comprise a hexadecyl alkyl chain and a charged pentapeptide headgroup containing two charged residues. For C16-ETTES, the critical aggregation concentration was determined by fluorescence experiments. FTIR and CD spectroscopy were used to examine β-sheet formation. TEM revealed highly extended tape nanostructures with some striped regions corresponding to bilayer structures viewed edge-on. Small-angle X-ray scattering showed a main 5.3 nm bilayer spacing along with a 3 nm spacing. These spacings are assigned respectively to predominant hydrated bilayers and a fraction of dehydrated bilayers. Signs of cooperative self-assembly are observed in the mixtures, including reduced bundling of peptide amphiphile aggregates (extended tape structures) and enhanced β-sheet formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The French government has committed to launch the satellite TARANIS to study transient coupling processes between the Earth’s atmosphere and near-Earth space. The prime objective of TARANIS is to detect energetic charged particles and hard radiation emanating from thunderclouds. The British Nobel prize winner C.T.R. Wilson predicted lightning discharges from the top of thunderclouds into space almost a century ago. However, new experiments have only recently confirmed energetic discharge processes which transfer energy from the top of thunderclouds into the upper atmosphere and near-Earth space; they are now denoted as transient luminous events, terrestrial gamma-ray flashes and relativistic electron beams. This meeting report builds on the current state of scientific knowledge on the physics of plasmas in the laboratory and naturally occurring plasmas in the Earth’s atmosphere to propose areas of future research. The report specifically reflects presentations delivered by the members of a novel Franco-British collaboration during a meeting at the French Embassy in London held in November 2011. The scientific subjects of the report tackle ionization processes leading to electrical discharge processes, observations of transient luminous events, electromagnetic emissions, energetic charged particles and their impact on the Earth’s atmosphere. The importance of future research in this area for science and society, and towards spacecraft protection, is emphasized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we studied the self-assembly of two peptide amphiphiles, C16-Gly-Gly-Gly-Arg-Gly- Asp (PA 1: C16-GGG-RGD) and C16-Gly-Gly-Gly-Arg-Gly-Asp-Ser (PA 2: C16-GGG-RGDS).We showed that PA 1 and PA 2 self-assemble into nanotapes with an internal bilayer structure. C16 chains were highly interdigitated within the nanotape cores, while the peptide blocks formed water-exposed b-sheets too. PA 1 nanotapes were characterized by one spacing distribution, corresponding to a more regular internal structure than that of PA 2 nanotapes, which presented two different spacing distributions. We showed that it is possible to obtain homogeneous nanotapes in water by co-assembling PA 1 or PA 2 with the negatively charged diluent C16-Glu-Thr-Thr-Glu- Ser (PA 3: C16-ETTES). The homogeneous tapes formed by PA 1–PA 3 or PA 2–PA 3 mixtures presented a structure similar to that observed for the corresponding pure PA 1 or PA 2 nanotapes. The mixed nanotapes, which were able to form a stabilized matrix containing homogeneously distributed cell adhesive RGD groups, represent promising materials for designing new cell adhesion substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Platelets are activated by a range of stimuli that share little or no resemblance in structure to each other or to recognized ligands, including diesel exhaust particles (DEP), small peptides [4N1-1, Champs (computed helical anti-membrane proteins), LSARLAF (Leu-Ser-Ala-Arg-Leu-Ala-Phe)], proteins (histones) and large polysaccharides (fucoidan, dextran sulfate). This miscellaneous group stimulate aggregation of human and mouse platelets through the glycoprotein VI (GPVI)-FcR γ-chain complex and/or C-type lectin-like receptor-2 (CLEC-2) as shown using platelets from mice deficient in either or both of these receptors. In addition, all of these ligands stimulate tyrosine phosphorylation in GPVI/CLEC-2-double-deficient platelets, indicating that they bind to additional surface receptors, although only in the case of dextran sulfate does this lead to activation. DEP, fucoidan and dextran sulfate, but not the other agonists, activate GPVI and CLEC-2 in transfected cell lines as shown using a sensitive reporter assay confirming a direct interaction with the two receptors. We conclude that this miscellaneous group of ligands bind to multiple proteins on the cell surface including GPVI and/or CLEC-2, inducing activation. These results have pathophysiological significance in a variety of conditions that involve exposure to activating charged/hydrophobic agents.