16 resultados para Bottle Labeling
Resumo:
Non-hypothetical valuations obtained from experimental auctions in three United States and two European locations were used to calculate welfare effects of introducing and labeling of genetically modified food. Under certain assumptions, we find that introduction of genetically modified food has been welfare enhancing, on average, for United States consumers but not so for Europeans and while mandatory labeling has been beneficial for European consumers, such a policy would be detrimental in the United States. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We have developed a general method for multiplexed quantitative proteomics using differential metabolic stable isotope labeling and mass spectrometry. The method was successfully used to study the dynamics of heat-shock response in Arabidopsis thaliana. A number of known heat-shock proteins were confirmed, and some proteins not previously associated with heat shock were discovered. The method is applicable in stable isotope labeling and allows for high degrees of multiplexing.
Resumo:
Stable isotope labeling combined with MS is a powerful method for measuring relative protein abundances, for instance, by differential metabolic labeling of some or all amino acids with 14N and 15N in cell culture or hydroponic media. These and most other types of quantitative proteomics experiments using high-throughput technologies, such as LC-MS/MS, generate large amounts of raw MS data. This data needs to be processed efficiently and automatically, from the mass spectrometer to statistically evaluated protein identifications and abundance ratios. This paper describes in detail an approach to the automated analysis of uniformly 14N/15N-labeled proteins using MASCOT peptide identification in conjunction with the trans-proteomic pipeline (TPP) and a few scripts to integrate the analysis workflow. Two large proteomic datasets from uniformly labeled Arabidopsis thaliana were used to illustrate the analysis pipeline. The pipeline can be fully automated and uses only common or freely available software.
Resumo:
Stable isotope labeling combined with MS is a powerful method for measuring relative protein abundances, for instance, by differential metabolic labeling of some or all amino acids with N-14 and N-15 in cell culture or hydroponic media. These and most other types of quantitative proteomics experiments using high-throughput technologies, such as LC-MS/MS, generate large amounts of raw MS data. This data needs to be processed efficiently and automatically, from the mass spectrometer to statistically evaluated protein identifications and abundance ratios. This paper describes in detail an approach to the automated analysis of Uniformly N-14/N-15-labeled proteins using MASCOT peptide identification in conjunction with the trans-proteomic pipeline (TPP) and a few scripts to integrate the analysis workflow. Two large proteomic datasets from uniformly labeled Arabidopsis thaliana were used to illustrate the analysis pipeline. The pipeline can be fully automated and uses only common or freely available software.
Resumo:
Quantitative analysis by mass spectrometry (MS) is a major challenge in proteomics as the correlation between analyte concentration and signal intensity is often poor due to varying ionisation efficiencies in the presence of molecular competitors. However, relative quantitation methods that utilise differential stable isotope labelling and mass spectrometric detection are available. Many drawbacks inherent to chemical labelling methods (ICAT, iTRAQ) can be overcome by metabolic labelling with amino acids containing stable isotopes (e.g. 13C and/or 15N) in methods such as Stable Isotope Labelling with Amino acids in Cell culture (SILAC). SILAC has also been used for labelling of proteins in plant cell cultures (1) but is not suitable for whole plant labelling. Plants are usually autotrophic (fixing carbon from atmospheric CO2) and, thus, labelling with carbon isotopes becomes impractical. In addition, SILAC is expensive. Recently, Arabidopsis cell cultures were labelled with 15N in a medium containing nitrate as sole nitrogen source. This was shown to be suitable for quantifying proteins and nitrogen-containing metabolites from this cell culture (2,3). Labelling whole plants, however, offers the advantage of studying quantitatively the response to stimulation or disease of a whole multicellular organism or multi-organism systems at the molecular level. Furthermore, plant metabolism enables the use of inexpensive labelling media without introducing additional stress to the organism. And finally, hydroponics is ideal to undertake metabolic labelling under extremely well-controlled conditions. We demonstrate the suitability of metabolic 15N hydroponic isotope labelling of entire plants (HILEP) for relative quantitative proteomic analysis by mass spectrometry. To evaluate this methodology, Arabidopsis plants were grown hydroponically in 14N and 15N media and subjected to oxidative stress.
Resumo:
There are several advantages of using metabolic labeling in quantitative proteomics. The early pooling of samples compared to post-labeling methods eliminates errors from different sample processing, protein extraction and enzymatic digestion. Metabolic labeling is also highly efficient and relatively inexpensive compared to commercial labeling reagents. However, methods for multiplexed quantitation in the MS-domain (or ‘non-isobaric’ methods), suffer from signal dilution at higher degrees of multiplexing, as the MS/MS signal for peptide identification is lower given the same amount of peptide loaded onto the column or injected into the mass spectrometer. This may partly be overcome by mixing the samples at non-uniform ratios, for instance by increasing the fraction of unlabeled proteins. We have developed an algorithm for arbitrary degrees of nonisobaric multiplexing for relative protein abundance measurements. We have used metabolic labeling with different levels of 15N, but the algorithm is in principle applicable to any isotope or combination of isotopes. Ion trap mass spectrometers are fast and suitable for LC-MS/MS and peptide identification. However, they cannot resolve overlapping isotopic envelopes from different peptides, which makes them less suitable for MS-based quantitation. Fourier-transform ion cyclotron resonance (FTICR) mass spectrometry is less suitable for LC-MS/MS, but provides the resolving power required to resolve overlapping isotopic envelopes. We therefore combined ion trap LC-MS/MS for peptide identification with FTICR LC-MS for quantitation using chromatographic alignment. We applied the method in a heat shock study in a plant model system (A. thaliana) and compared the results with gene expression data from similar experiments in literature.
Eco-labeling in commercial office markets: do LEED and Energy Star offices obtain multiple premiums?
Resumo:
Metabolic stable isotope labeling is increasingly employed for accurate protein (and metabolite) quantitation using mass spectrometry (MS). It provides sample-specific isotopologues that can be used to facilitate comparative analysis of two or more samples. Stable Isotope Labeling by Amino acids in Cell culture (SILAC) has been used for almost a decade in proteomic research and analytical software solutions have been established that provide an easy and integrated workflow for elucidating sample abundance ratios for most MS data formats. While SILAC is a discrete labeling method using specific amino acids, global metabolic stable isotope labeling using isotopes such as (15)N labels the entire element content of the sample, i.e. for (15)N the entire peptide backbone in addition to all nitrogen-containing side chains. Although global metabolic labeling can deliver advantages with regard to isotope incorporation and costs, the requirements for data analysis are more demanding because, for instance for polypeptides, the mass difference introduced by the label depends on the amino acid composition. Consequently, there has been less progress on the automation of the data processing and mining steps for this type of protein quantitation. Here, we present a new integrated software solution for the quantitative analysis of protein expression in differential samples and show the benefits of high-resolution MS data in quantitative proteomic analyses.
Resumo:
Drawing upon an updated and expanded dataset of Energy Star and LEED labeled commercial offices, this paper investigates the effect of eco-labeling on rental rates, sale prices and occupancy rates. Using OLS and robust regression procedures, hedonic modeling is used to test whether the presence of an eco-label has a significant positive effect on rental rates, sale prices and occupancy rates. The study suggests that estimated coefficients can be sensitive to outlier treatment. For sale prices and occupancy rates, there are notable differences between estimated coefficients for OLS and robust regressions. The results suggest that both Energy Star and LEED offices obtain rental premiums of approximately 3%. A 17% sale price premium is estimated for Energy Star labeled offices but no significant sale price premium is estimated for LEED labeled offices. Surprisingly, no significant occupancy premium is estimated for Energy Star labeled offices and a negative occupancy premium is estimated for LEED labeled offices.
Resumo:
This paper investigates the extent to which clients were able to influence performance measurement appraisals during the downturn in commercial property markets that began in the UK during the second half of 2007. The sharp change in market sentiment produced speculation that different client categories were attempting to influence their appraisers in different ways. In particular, it was recognised that the requirement for open-ended funds to meet redemptions gave them strong incentives to ensure that their asset values were marked down to market. Using data supplied by Investment Property Databank, we demonstrate that, indeed, unlisted open ended funds experienced sharper drops in capital values than other fund types in the second half of 2007, after the market turning point. These differences are statistically significant and cannot simply be explained by differences in portfolio composition. Client influence on appraisal forms one possible explanation of the results observed: the different pressures on fund managers resulting in different appraisal outcomes.