69 resultados para Asymptotic Variance of Estimate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

If X is a stable process of index α∈(0, 2) whose Lévy measure has density cx−α−1 on (0, ∞), and S1=sup0x)∽Aα−1x−α as x→∞ and P(S1≤x)∽Bα−1ρ−1xαρ as x↓0. [Here ρ=P(X1>0) and A and B are known constants.] It is also known that S1 has a continuous density, m say. The main point of this note is to show that m(x)∽Ax−(α+1) as x→∞ and m(x)∽Bxαρ−1 as x↓0. Similar results are obtained for related densities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A generalized asymptotic expansion in the far field for the problem of cylindrical wave reflection at a homogeneous impedance plane is derived. The expansion is shown to be uniformly valid over all angles of incidence and values of surface impedance, including the limiting cases of zero and infinite impedance. The technique used is a rigorous application of the modified steepest descent method of Ot

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The variogram is essential for local estimation and mapping of any variable by kriging. The variogram itself must usually be estimated from sample data. The sampling density is a compromise between precision and cost, but it must be sufficiently dense to encompass the principal spatial sources of variance. A nested, multi-stage, sampling with separating distances increasing in geometric progression from stage to stage will do that. The data may then be analyzed by a hierarchical analysis of variance to estimate the components of variance for every stage, and hence lag. By accumulating the components starting from the shortest lag one obtains a rough variogram for modest effort. For balanced designs the analysis of variance is optimal; for unbalanced ones, however, these estimators are not necessarily the best, and the analysis by residual maximum likelihood (REML) will usually be preferable. The paper summarizes the underlying theory and illustrates its application with data from three surveys, one in which the design had four stages and was balanced and two implemented with unbalanced designs to economize when there were more stages. A Fortran program is available for the analysis of variance, and code for the REML analysis is listed in the paper. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The variogram is essential for local estimation and mapping of any variable by kriging. The variogram itself must usually be estimated from sample data. The sampling density is a compromise between precision and cost, but it must be sufficiently dense to encompass the principal spatial sources of variance. A nested, multi-stage, sampling with separating distances increasing in geometric progression from stage to stage will do that. The data may then be analyzed by a hierarchical analysis of variance to estimate the components of variance for every stage, and hence lag. By accumulating the components starting from the shortest lag one obtains a rough variogram for modest effort. For balanced designs the analysis of variance is optimal; for unbalanced ones, however, these estimators are not necessarily the best, and the analysis by residual maximum likelihood (REML) will usually be preferable. The paper summarizes the underlying theory and illustrates its application with data from three surveys, one in which the design had four stages and was balanced and two implemented with unbalanced designs to economize when there were more stages. A Fortran program is available for the analysis of variance, and code for the REML analysis is listed in the paper. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sequential methods provide a formal framework by which clinical trial data can be monitored as they accumulate. The results from interim analyses can be used either to modify the design of the remainder of the trial or to stop the trial as soon as sufficient evidence of either the presence or absence of a treatment effect is available. The circumstances under which the trial will be stopped with a claim of superiority for the experimental treatment, must, however, be determined in advance so as to control the overall type I error rate. One approach to calculating the stopping rule is the group-sequential method. A relatively recent alternative to group-sequential approaches is the adaptive design method. This latter approach provides considerable flexibility in changes to the design of a clinical trial at an interim point. However, a criticism is that the method by which evidence from different parts of the trial is combined means that a final comparison of treatments is not based on a sufficient statistic for the treatment difference, suggesting that the method may lack power. The aim of this paper is to compare two adaptive design approaches with the group-sequential approach. We first compare the form of the stopping boundaries obtained using the different methods. We then focus on a comparison of the power of the different trials when they are designed so as to be as similar as possible. We conclude that all methods acceptably control type I error rate and power when the sample size is modified based on a variance estimate, provided no interim analysis is so small that the asymptotic properties of the test statistic no longer hold. In the latter case, the group-sequential approach is to be preferred. Provided that asymptotic assumptions hold, the adaptive design approaches control the type I error rate even if the sample size is adjusted on the basis of an estimate of the treatment effect, showing that the adaptive designs allow more modifications than the group-sequential method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[1] Cloud cover is conventionally estimated from satellite images as the observed fraction of cloudy pixels. Active instruments such as radar and Lidar observe in narrow transects that sample only a small percentage of the area over which the cloud fraction is estimated. As a consequence, the fraction estimate has an associated sampling uncertainty, which usually remains unspecified. This paper extends a Bayesian method of cloud fraction estimation, which also provides an analytical estimate of the sampling error. This method is applied to test the sensitivity of this error to sampling characteristics, such as the number of observed transects and the variability of the underlying cloud field. The dependence of the uncertainty on these characteristics is investigated using synthetic data simulated to have properties closely resembling observations of the spaceborne Lidar NASA-LITE mission. Results suggest that the variance of the cloud fraction is greatest for medium cloud cover and least when conditions are mostly cloudy or clear. However, there is a bias in the estimation, which is greatest around 25% and 75% cloud cover. The sampling uncertainty is also affected by the mean lengths of clouds and of clear intervals; shorter lengths decrease uncertainty, primarily because there are more cloud observations in a transect of a given length. Uncertainty also falls with increasing number of transects. Therefore a sampling strategy aimed at minimizing the uncertainty in transect derived cloud fraction will have to take into account both the cloud and clear sky length distributions as well as the cloud fraction of the observed field. These conclusions have implications for the design of future satellite missions. This paper describes the first integrated methodology for the analytical assessment of sampling uncertainty in cloud fraction observations from forthcoming spaceborne radar and Lidar missions such as NASA's Calipso and CloudSat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two simple and frequently used capture–recapture estimates of the population size are compared: Chao's lower-bound estimate and Zelterman's estimate allowing for contaminated distributions. In the Poisson case it is shown that if there are only counts of ones and twos, the estimator of Zelterman is always bounded above by Chao's estimator. If counts larger than two exist, the estimator of Zelterman is becoming larger than that of Chao's, if only the ratio of the frequencies of counts of twos and ones is small enough. A similar analysis is provided for the binomial case. For a two-component mixture of Poisson distributions the asymptotic bias of both estimators is derived and it is shown that the Zelterman estimator can experience large overestimation bias. A modified Zelterman estimator is suggested and also the bias-corrected version of Chao's estimator is considered. All four estimators are compared in a simulation study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was conducted to estimate variation among laboratories and between manual and automated techniques of measuring pressure on the resulting gas production profiles (GPP). Eight feeds (molassed sugarbeet feed, grass silage, maize silage, soyabean hulls, maize gluten feed, whole crop wheat silage, wheat, glucose) were milled to pass a I mm screen and sent to three laboratories (ADAS Nutritional Sciences Research Unit, UK; Institute of Grassland and Environmental Research (IGER), UK; Wageningen University, The Netherlands). Each laboratory measured GPP over 144 h using standardised procedures with manual pressure transducers (MPT) and automated pressure systems (APS). The APS at ADAS used a pressure transducer and bottles in a shaking water bath, while the APS at Wageningen and IGER used a pressure sensor and bottles held in a stationary rack. Apparent dry matter degradability (ADDM) was estimated at the end of the incubation. GPP were fitted to a modified Michaelis-Menten model assuming a single phase of gas production, and GPP were described in terms of the asymptotic volume of gas produced (A), the time to half A (B), the time of maximum gas production rate (t(RM) (gas)) and maximum gas production rate (R-M (gas)). There were effects (P<0.001) of substrate on all parameters. However, MPT produced more (P<0.001) gas, but with longer (P<0.001) B and t(RM gas) (P<0.05) and lower (P<0.001) R-M gas compared to APS. There was no difference between apparatus in ADDM estimates. Interactions occurred between substrate and apparatus, substrate and laboratory, and laboratory and apparatus. However, when mean values for MPT were regressed from the individual laboratories, relationships were good (i.e., adjusted R-2 = 0.827 or higher). Good relationships were also observed with APS, although they were weaker than for MPT (i.e., adjusted R-2 = 0.723 or higher). The relationships between mean MPT and mean APS data were also good (i.e., adjusted R 2 = 0. 844 or higher). Data suggest that, although laboratory and method of measuring pressure are sources of variation in GPP estimation, it should be possible using appropriate mathematical models to standardise data among laboratories so that data from one laboratory could be extrapolated to others. This would allow development of a database of GPP data from many diverse feeds. (c) 2005 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that the Hájek (Ann. Math Statist. (1964) 1491) variance estimator can be used to estimate the variance of the Horvitz–Thompson estimator when the Chao sampling scheme (Chao, Biometrika 69 (1982) 653) is implemented. This estimator is simple and can be implemented with any statistical packages. We consider a numerical and an analytic method to show that this estimator can be used. A series of simulations supports our findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two simple and frequently used capture–recapture estimates of the population size are compared: Chao's lower-bound estimate and Zelterman's estimate allowing for contaminated distributions. In the Poisson case it is shown that if there are only counts of ones and twos, the estimator of Zelterman is always bounded above by Chao's estimator. If counts larger than two exist, the estimator of Zelterman is becoming larger than that of Chao's, if only the ratio of the frequencies of counts of twos and ones is small enough. A similar analysis is provided for the binomial case. For a two-component mixture of Poisson distributions the asymptotic bias of both estimators is derived and it is shown that the Zelterman estimator can experience large overestimation bias. A modified Zelterman estimator is suggested and also the bias-corrected version of Chao's estimator is considered. All four estimators are compared in a simulation study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical density measurements were used to estimate the effect of heat treatments on the single-cell lag times of Listeria innocua fitted to a shifted gamma distribution. The single-cell lag time was subdivided into repair time ( the shift of the distribution assumed to be uniform for all cells) and adjustment time (varying randomly from cell to cell). After heat treatments in which all of the cells recovered (sublethal), the repair time and the mean and the variance of the single-cell adjustment time increased with the severity of the treatment. When the heat treatments resulted in a loss of viability (lethal), the repair time of the survivors increased with the decimal reduction of the cell numbers independently of the temperature, while the mean and variance of the single-cell adjustment times remained the same irrespective of the heat treatment. Based on these observations and modeling of the effect of time and temperature of the heat treatment, we propose that the severity of a heat treatment can be characterized by the repair time of the cells whether the heat treatment is lethal or not, an extension of the F value concept for sublethal heat treatments. In addition, the repair time could be interpreted as the extent or degree of injury with a multiple-hit lethality model. Another implication of these results is that the distribution of the time for cells to reach unacceptable numbers in food is not affected by the time-temperature combination resulting in a given decimal reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we initiate the study of a class of Putnam-type equation of the form x(n-1) = A(1)x(n) + A(2)x(n-1) + A(3)x(n-2)x(n-3) + A(4)/B(1)x(n)x(n-1) + B(2)x(n-2) + B(3)x(n-3) + B-4 n = 0, 1, 2,..., where A(1), A(2), A(3), A(4), B-1, B-2, B-3, B-4 are positive constants with A(1) + A(2) + A(3) + A(4) = B-1 + B-2 + B-3 + B-4, x(-3), x(-2), x(-1), x(0) are positive numbers. A sufficient condition is given for the global asymptotic stability of the equilibrium point c = 1 of such equations. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In numerical weather prediction (NWP) data assimilation (DA) methods are used to combine available observations with numerical model estimates. This is done by minimising measures of error on both observations and model estimates with more weight given to data that can be more trusted. For any DA method an estimate of the initial forecast error covariance matrix is required. For convective scale data assimilation, however, the properties of the error covariances are not well understood. An effective way to investigate covariance properties in the presence of convection is to use an ensemble-based method for which an estimate of the error covariance is readily available at each time step. In this work, we investigate the performance of the ensemble square root filter (EnSRF) in the presence of cloud growth applied to an idealised 1D convective column model of the atmosphere. We show that the EnSRF performs well in capturing cloud growth, but the ensemble does not cope well with discontinuities introduced into the system by parameterised rain. The state estimates lose accuracy, and more importantly the ensemble is unable to capture the spread (variance) of the estimates correctly. We also find, counter-intuitively, that by reducing the spatial frequency of observations and/or the accuracy of the observations, the ensemble is able to capture the states and their variability successfully across all regimes.