69 resultados para Asset Management, Built Environment, Engineering Asset Management, Life Cycle Management, Physical Asset Management
Resumo:
A whole life-cycle information management vision is proposed, the organizational requirements for the realization of the scenario is investigated. Preliminary interviews with construction professionals are reported. Discontinuities at information transfer throughout life-cycle of built environments are resulting from lack of coordination and multiple data collection/storage practices. A more coherent history of these activities can improve the work practices of various teams by augmenting decision making processes and creating organizational learning opportunities. Therefore, there is a need for unifying these fragmented bits of data to create a meaningful, semantically rich and standardized information repository for built environment. The proposed vision utilizes embedded technologies and distributed building information models. Two diverse construction project types (large one-off design, small repetitive design) are investigated for the applicability of the vision. A functional prototype software/hardware system for demonstrating the practical use of this vision is developed and discussed. Plans for case-studies for validating the proposed model at a large PFI hospital and housing association projects are discussed.
Resumo:
There is a growing concern in reducing greenhouse gas emissions all over the world. The U.K. has set 34% target reduction of emission before 2020 and 80% before 2050 compared to 1990 recently in Post Copenhagen Report on Climate Change. In practise, Life Cycle Cost (LCC) and Life Cycle Assessment (LCA) tools have been introduced to construction industry in order to achieve this such as. However, there is clear a disconnection between costs and environmental impacts over the life cycle of a built asset when using these two tools. Besides, the changes in Information and Communication Technologies (ICTs) lead to a change in the way information is represented, in particular, information is being fed more easily and distributed more quickly to different stakeholders by the use of tool such as the Building Information Modelling (BIM), with little consideration on incorporating LCC and LCA and their maximised usage within the BIM environment. The aim of this paper is to propose the development of a model-based LCC and LCA tool in order to provide sustainable building design decisions for clients, architects and quantity surveyors, by then an optimal investment decision can be made by studying the trade-off between costs and environmental impacts. An application framework is also proposed finally as the future work that shows how the proposed model can be incorporated into the BIM environment in practise.
Resumo:
FOREWORD Welcome to this West Africa Built Environment Research (WABER) conference taking place here in Ghana. Thank you for coming and welcome to Accra. The main aims of the WABER conference are: to help young researchers and early-career scholars in West Africa to develop their research work and skills through constructive face-to-face interaction with experienced academics; to provide a platform for networking and collaborative work among senior built environment academics in West Africa; and to serve as a vehicle for developing the field of construction management and economics in Africa. Waber 2009 The WABER event in 2009 was held at the British Council in Accra, Ghana on 2-3 June. The event was a resounding success. It attracted participation from 32 researchers, from 12 different institutions, who presented their work to an audience of approximately 100 people. Each presenter received immediate and constructive feedback from an international panel. The event was opened by Professor K.K. Adarkwa, Vice Chancellor of KNUST, Kumasi, Ghana, with several senior academics and researchers from universities, polytechnics, and other institutions in Ghana and Nigeria in attendance. There was also a significant level of attendance by senior construction practitioners in Ghana. Thank you to the School of Construction Management and Engineering, University of Reading, UK for funding the inaugural event in 2009. We are also grateful to all of you who helped to make the event a success and to those of you who have joined us here today to build upon the success and legacy of WABER 2009. Waber 2010 This year, we have 60+ peer-reviewed papers and presentations on topics relating to Building services and maintenance, Construction costs, Construction design and technology, Construction education, Construction finance, Construction procurement, Contract administration, Contract management, Contractor development, Decision support systems, Dispute resolution, Economic development, Energy efficiency, Environment and sustainability, Health and safety, Human resources, Information technology, Marketing, Materials science, Organisation strategy and business performance, Productivity, Project management, Quantity surveying, Real estate and planning, Solar energy systems, Supply chain management and Urban development. We hope that these papers will generate interest among delagates and stimulate discussion here and beyond the conference into the wider community of academia and industry. The delegates at this conference come from 10 different countries. This provides a rich international and multicultural blend and a perfect platform for networking and developing collaborations. This year we are blessed to have three high profile keynote speakers in the persons of Professor George Ofori (National University of Singapore), Dr Roine Leiringer (University of Reading, UK) and Professor Will Hughes (University of Reading, UK). We are also thankful to Dr Chris Harty (University of Reading, UK) who is facilitating the Research Skills Workshop on ‘Writing a scientific article’. Thank you to Dr Sena Agyepong of our conference organising team for her capable management of local organising arrangements. And above all, thank you to all of you for coming to this conference. Enjoy and have a safe journey back home. Dr Samuel Laryea School of Construction Management and Engineering University of Reading, July 2010
Resumo:
Life-Cycle Assessment (LCA) was used to assess the potential environmental and human health impacts of growing genetically-modified (GM), herbicide-tolerant sugar beet in the UK and Germany compared with conventional sugar beet varieties. The GM variety results in lower potential environmental impacts on global warming, airborne nutrification, ecotoxicity (of soil and water) and watercourse enrichment, and lower potential human health impacts in terms of production of toxic particulates, summer smog, carcinogens and ozone depletion. Although the overall contribution of GM sugar beet to reducing harmful emissions to the environment would be relatively small, the potential for GM crops to reduce pollution from agriculture, including diffuse water pollution, is highlighted.
Resumo:
Built environment programmes in West African universities; and research contributions from West Africa in six leading international journals and proceedings of the WABER conference are explored. At least 20 universities in the region offer degree programmes in Architecture (86% out of 23 universities); Building (57%); Civil Engineering (67%); Estate Management (52%); Quantity Surveying (52%); Surveying and Geoinformatics (55%); Urban and Regional Planning (67%). The lecturer-student ratio on programmes is around 1:25 compared to the 1:10 benchmark for excellence. Academics who teach on the programmes are clearly research active with some having published papers in leading international journals. There is, however, plenty of scope for improvement particularly at the highest international level. Out of more than 5000 papers published in six leading international peer-reviewed journals since each of them was established, only 23 of the papers have come from West Africa. The 23 papers are published by 28 academics based in 13 universities. Although some academics may publish their work in the plethora of journals that have proliferated in recent years, new generation researchers are encouraged to publish in more established journals. The analyses of 187 publications in the WABER conference proceedings revealed 18 research-active universities. Factors like quality of teaching, research and lecturer-student ratio, etc count in the ranking of universities. The findings lay bare some of the areas that should be addressed to improve the landscape of higher education in West Africa.
Resumo:
This paper presents the findings from a study into the current exploitation of computer-supported collaborative working (CSCW) in design for the built environment in the UK. The research is based on responses to a web-based questionnaire. Members of various professions, including civil engineers, architects, building services engineers, and quantity surveyors, were invited to complete the questionnaire. The responses reveal important trends in the breadth and size of project teams at the same time as new pressures are emerging regarding team integration and efficiency. The findings suggest that while CSCW systems may improve project management (e.g., via project documentation) and the exchange of information between team members, it has yet to significantly support those activities that characterize integrated collaborative working between disparate specialists. The authors conclude by combining the findings with a wider discussion of the application of CSCW to design activity-appealing for CSCW to go beyond multidisciplinary working to achieve interdisciplinary working.
Resumo:
Purpose – The purpose of this research is to show that reliability analysis and its implementation will lead to an improved whole life performance of the building systems, and hence their life cycle costs (LCC). Design/methodology/approach – This paper analyses reliability impacts on the whole life cycle of building systems, and reviews the up-to-date approaches adopted in UK construction, based on questionnaires designed to investigate the use of reliability within the industry. Findings – Approaches to reliability design and maintainability design have been introduced from the operating environment level, system structural level and component level, and a scheduled maintenance logic tree is modified based on the model developed by Pride. Different stages of the whole life cycle of building services systems, reliability-associated factors should be considered to ensure the system's whole life performance. It is suggested that data analysis should be applied in reliability design, maintainability design, and maintenance policy development. Originality/value – The paper presents important factors in different stages of the whole life cycle of the systems, and reliability and maintainability design approaches which can be helpful for building services system designers. The survey from the questionnaires provides the designers with understanding of key impacting factors.
Resumo:
Innovation in the built environment involves multiple actors with diverse motivations. Policy-makers find it difficult to promote changes that require cooperation from these numerous and dispersed actors and to align their sometimes divergent interests. Established research traditions on the economics and management of innovation pay only limited attention to stakeholder choices, engagement and motivation. This paper reviews the insights that emerge as research in these traditions comes into contact with work on innovation from sociological and political perspectives. It contributes by highlighting growing areas of research on user involvement in complex innovation, collective action, distributed innovation and transition management. To differing extents, these provide approaches to incorporate the motivations of different actors into theoretical understanding. These indicate new directions for research that promise to enrich understanding of innovation.
Resumo:
This introductory chapter sets the scene for the book, providing an overview of sustainability in the built environment. With a bias towards buildings and the urban environment, it illustrates the range of issues that impinge upon global carbon reduction and the mechanisms available to help bring about change. Climate change, and its impact on built environment, is briefly introduced and sustainability in the built environment and associated factors are described. The specific topics relating to sustainable design and management of the built environment, including policy and assessment, planning, energy, water and waste, technology, supply and demand, occupants’ behaviour and management have been highlighted. This chapter emphasises the importance of a systemic approach in delivering a sustainable built environment.
Resumo:
The research will explore views on inclusive design policy implementation and learning strategy used in practice by Local Authorities’ planning, building control and policy departments in England. It reports emerging research findings. The research aim was developed from an extensive literature review, and informed by a pilot study with relevant Local Authority departments. The pilot study highlighted gaps within the process of policy implementation, a lack of awareness of the process and flaws in the design guidance policy. This has helped inform the development of a robust research design using both a survey and semi-structured interviews. The questionnaire targeted key employees within Local Authorities designed to establish how employees learn about inclusive design policy and to determine their views on current approaches of inclusive design policy implementation adopted by their Local Authorities. The questionnaire produces 117 responses. Interestingly approximately 9 out of 129 Local Authorities approached claimed that they were unable to participate either because an inclusive design policy was not adopted or they were faced with a high workload and thus unable to take part. An emerging finding is a lack of understanding of inclusive design problems, which may lead to problem with inclusive design policy implementation, and thus adversely affect how the built environment can be experienced. There is a strong indication from the survey respondents indicating that they are most likely to learn about inclusive design from policy guides produced by their Local Authorities and from their colleagues.
Resumo:
Building Information Modeling (BIM) is the process of structuring, capturing, creating, and managing a digital representation of physical and/or functional characteristics of a built space [1]. Current BIM has limited ability to represent dynamic semantics, social information, often failing to consider building activity, behavior and context; thus limiting integration with intelligent, built-environment management systems. Research, such as the development of Semantic Exchange Modules, and/or the linking of IFC with semantic web structures, demonstrates the need for building models to better support complex semantic functionality. To implement model semantics effectively, however, it is critical that model designers consider semantic information constructs. This paper discusses semantic models with relation to determining the most suitable information structure. We demonstrate how semantic rigidity can lead to significant long-term problems that can contribute to model failure. A sufficiently detailed feasibility study is advised to maximize the value from the semantic model. In addition we propose a set of questions, to be used during a model’s feasibility study, and guidelines to help assess the most suitable method for managing semantics in a built environment.
Resumo:
This paper is an engineer's appreciation of environmental assessment with particular reference to highway development. While scheme-related Environmental Assessment for individual development may identify particular potential impacts, and may avoid or minimise some of the problems, in many cases it may be too late to take such actions. Ideally, Environmental Assessment should commence at the Strategic Level to cover policies, plan and programmes, and the scheme-related Environmental Assessments for individual projects should supplement those in the framework of Strategic Level. The utimate target is to assess the policy for their contribution to effecting sustainable development. Whole Life Environmental Impacts should be considered. These are the full impact consideration from planning, design and choice of materials, construction, operation and finally decommission. Most of the Environmental Assessments have not included the Whole Life Environmental Impacts. There is only limited monitoring in the operation stage after the construction of the scheme is complete, therefore, subsequent Environmental Assessments cannot benefit from the feedback of the scheme. No development should cost the Earth, hence Environmental Assessments have to be carried out thoroughly to serve as one of the instruments to meet the need of sustainable development.