26 resultados para Arms and armament
Resumo:
A series of the most common chelators used in magnetic resonance imaging ( MRI) and in radiopharmaceuticals for medical diagnosis and tumour therapy, H(4)dota, H(4)teta, H(8)dotp and H(8)tetp, is examined from a chemical point of view. Differences between 12- and 14-membered tetraazamacrocyclic derivatives with methylcarboxylate and methylphosphonate pendant arms and their chelates with divalent first-series transition metal and trivalent lanthanide ions are discussed on the basis of their thermodynamic stability constants, X- ray structures and theoretical studies.
Resumo:
Rats with fornix transection, or with cytotoxic retrohippocampal lesions that removed entorhinal cortex plus ventral subiculum, performed a task that permits incidental learning about either allocentric (Allo) or egocentric (Ego) spatial cues without the need to navigate by them. Rats learned eight visual discriminations among computer-displayed scenes in a Y-maze, using the constant-negative paradigm. Every discrimination problem included two familiar scenes (constants) and many less familiar scenes (variables). On each trial, the rats chose between a constant and a variable scene, with the choice of the variable rewarded. In six problems, the two constant scenes had correlated spatial properties, either Alto (each constant appeared always in the same maze arm) or Ego (each constant always appeared in a fixed direction from the start arm) or both (Allo + Ego). In two No-Cue (NC) problems, the two constants appeared in randomly determined arms and directions. Intact rats learn problems with an added Allo or Ego cue faster than NC problems; this facilitation provides indirect evidence that they learn the associations between scenes and spatial cues, even though that is not required for problem solution. Fornix and retrohippocampal-lesioned groups learned NC problems at a similar rate to sham-operated controls and showed as much facilitation of learning by added spatial cues as did the controls; therefore, both lesion groups must have encoded the spatial cues and have incidentally learned their associations with particular constant scenes. Similar facilitation was seen in subgroups that had short or long prior experience with the apparatus and task. Therefore, neither major hippocampal input-output system is crucial for learning about allocentric or egocentric cues in this paradigm, which does not require rats to control their choices or navigation directly by spatial cues.
Resumo:
This paper presents a completely new design of a bogie-frame made of glass fibre reinforced composites and its performance under various loading conditions predicted by finite element analysis. The bogie consists of two frames, with one placed on top of the other, and two axle ties connecting the axles. Each frame consists of two side arms and a transom between. The top frame is thinner and more compliant and has a higher curvature compared with the bottom frame. Variable vertical stiffness can be achieved before and after the contact between the two frames at the central section of the bogie to cope with different load levels. Finite element analysis played a very important role in the design of this structure. Stiffness and stress levels of the full scale bogie presented in this paper under various loading conditions have been predicted by using Marc provided by MSC Software. In order to verify the finite element analysis (FEA) models, a fifth scale prototype of the bogie has been made and tested under quasi-static loading conditions. Results of testing on the fifth scale bogie have been used to fine tune details like contact and friction in the fifth scale FEA models. These conditions were then applied to the full scale models. Finite element analysis results show that the stress levels in all directions are low compared with material strengths.
Resumo:
Analysis of the thinking on just war and conflict mediation of the only classical woman strategist, who lived around 1400, and wrote this with a view to the Hundred Years' War and civil wars and insurgencies taking place in her lifetime. Christine de Pizan's Feats of Arms and Chivalry would later become the first printed and widely distributed field manual, translated into English and printed by Caxton for Henry VII Tudor.
Video stimuli reduce object-directed imitation accuracy: a novel two-person motion-tracking approach
Resumo:
Imitation is an important form of social behavior, and research has aimed to discover and explain the neural and kinematic aspects of imitation. However, much of this research has featured single participants imitating in response to pre-recorded video stimuli. This is in spite of findings that show reduced neural activation to video vs. real life movement stimuli, particularly in the motor cortex. We investigated the degree to which video stimuli may affect the imitation process using a novel motion tracking paradigm with high spatial and temporal resolution. We recorded 14 positions on the hands, arms, and heads of two individuals in an imitation experiment. One individual freely moved within given parameters (moving balls across a series of pegs) and a second participant imitated. This task was performed with either simple (one ball) or complex (three balls) movement difficulty, and either face-to-face or via a live video projection. After an exploratory analysis, three dependent variables were chosen for examination: 3D grip position, joint angles in the arm, and grip aperture. A cross-correlation and multivariate analysis revealed that object-directed imitation task accuracy (as represented by grip position) was reduced in video compared to face-to-face feedback, and in complex compared to simple difficulty. This was most prevalent in the left-right and forward-back motions, relevant to the imitator sitting face-to-face with the actor or with a live projected video of the same actor. The results suggest that for tasks which require object-directed imitation, video stimuli may not be an ecologically valid way to present task materials. However, no similar effects were found in the joint angle and grip aperture variables, suggesting that there are limits to the influence of video stimuli on imitation. The implications of these results are discussed with regards to previous findings, and with suggestions for future experimentation.
Resumo:
New dioxadiaza- and trioxadiaza-macrocycles containing one rigid dibenzofuran unit (DBF) and N-(2-aminoethyl) pendant arms were synthesized, N,N'-bis(2-aminoethyl)-[17]( DBF) N2O2 (L-1) and N,N'-bis(2-aminoethyl)-[22](DBF)N2O3 (L-2), respectively. The binding properties of both macrocycles to metal ions and structural studies of their metal complexes were carried out. The protonation constants of both compounds and the stability constants of their complexes with Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ were determined at 298.2 K, in aqueous solutions, and at ionic strength 0.10 mol dm(-3) in KNO3. Mononuclear complexes with both ligands were formed, and dinuclear complexes were only found for L-2. The thermodynamic binding affinities of the metal complexes of L-2 are lower than those of L-1 as expected, but the Pb2+ complexes of both macrocycles exhibit close stability constant values. On the other hand, the binding affinities of Cd2+ and Pb2+ for L-1 are very high, when compared to those of Co2+, Ni2+ and Zn2+. These interesting properties were explained by the presence of the rigid DBF moiety in the backbone of the macrocycle and to the special match between the macrocyclic cavity size and the studied larger metal ions. To elucidate the adopted structures of complexes in solution, the nickel(II) and copper( II) complexes with both ligands were further studied by UV-vis-MR spectroscopy in DMSO-H2O 1 : 1 (v/v) solution. The copper(II) complexes were also studied by EPR spectroscopy in the same mixture of solvents. The crystal structure of the copper complex of L-1 was also determined. The copper(II) displays an octahedral geometry, the four nitrogen atoms forming the equatorial plane and two oxygen atoms, one from the DBF unit and the other one from the ether oxygen, in axial positions. One of the ether oxygens of the macrocycle is out of the coordination sphere. Our results led us to suggest that this geometry is also adopted by the Co2+ to Zn2+ complexes, and only the larger Cd2+ and Pb2+ manage to form complexes with the involvement of all the oxygen atoms of the macrocyclic backbone.
Resumo:
The ligands 1,4,8,11-tetraazacyclotetradecane-1,4,8-triacetic-11-methylphosphonic acid (H(5)te3a1p) and 1,4,8,11-tetraazacyclotetradecane-1,4,8-triacetic acid (H(3)te3a) were synthesized, the former one for the first time. The syntheses of these ligands were achieved from reactions on 1,4,8,11-tetraazacyclotetradecane-1,4,8-tris( carbamoylmethyl) hydroiodide (te3am center dot HI), and compounds (Hte3am)(+), 1, and (H(7)te3a1p)(2+), 4, were characterized by X-ray diffraction. Structures of two other compounds resulting from side-reactions, (H(2)te2lac)(2+), 2, and (H(4)te2a2p(OEt2))(2+), 3, were also determined by X-ray diffraction. Potentiometric titrations of H(5)te3a1p and H(3)te3a were performed at 298.2 K and ionic strength 0.10 mol dm(-3) in NMe4NO3 to determine their protonation constants. H-1 and P-31 NMR titrations of H(5)te3a1p were carried out in order to determine the very high first protonation constant of this ligand and to elucidate the sequence of protonation. Potentiometric studies of the two ligands with Ca2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+ metal ions performed in the same experimental conditions showed that the complexes of H5te3a1p present very high thermodynamic stability while complexes of H(3)te3a, particularly Co2+ and Zn2+, are even more stable. P-31 NMR spectra of the cadmium(II) complex of H(5)te3a1p showed that the phosphonate moiety was coordinated to the metal ion. The UV-vis-NIR spectroscopic data and magnetic moment values of Co2+ and Ni2+ complexes of H(5)te3a1p and H(3)te3a together with the EPR of the corresponding Cu2+ complexes indicated that all these complexes adopt distorted octahedral coordination geometries in solution. This was confirmed by the single crystal structure of [Cu-2(Hte3a)(H2O)(3)Cl]Cl-0.5(ClO4)(0.5) center dot 2H(2)O that showed two distorted octahedral copper centres bridged by a N-acetate pendant arm with a Cu center dot center dot center dot Cu distance of 4.890(1) angstrom. The first one is encapsulated into the macrocyclic cavity surrounded by four nitrogen and two oxygen donors from the macrocycle, whereas the second one is on the periphery of the macrocycle and is coordinated to two oxygen atoms of one acetate pendant arm in chelating fashion, one chloride and three water molecules.
Resumo:
Inversions breaking the 1041 bp int1h-1 or the 9.5-kb int22h-1 sequence of the F8 gene cause hemophilia A in 1/30,000 males. These inversions are due to homologous recombination between the above sequences and their inverted copies on the same DNA molecule, respectively, int1h-2 and int22h-2 or int22h-3. We find that (1) int1h and int22h duplicated more than 25 million years ago; (2) the identity of the copies (>99%) of these sequences in humans and other primates is due to gene conversion; (3) gene conversion is most frequent in the internal regions of int22h; (4) breakpoints of int22h-related inversions also tend to involve the internal regions of int22h; (5) sequence variations in a sample of human X chromosomes defined eight haplotypes of int22h-1 and 27 of int22h-2 plus int22h-3; (6) the latter two sequences, which lie, respectively, 500 and 600 kb telomeric to int22h-1 are five-fold more identical when in cis than when in trans, thus suggesting that gene conversion may be predominantly intrachromosomal; (7) int1h, int22h, and flanking sequences evolved at a rate of about 0.1% substitutions per million years during the divergence between humans and other primates, except for int1h during the human-chimpanzee divergence, when its rate of evolution was significantly lower. This is reminiscent of the slower evolution of palindrome arms in the male specific regions of the Y chromosome and we propose, as an explanation, that intrachromosomal gene conversion and cosegregation of the duplicated regions favors retention of the ancestral sequence and thus reduces the evolution rate.
Resumo:
Identifying factors which allow the evolution and persistence of cooperative interactions between species is a fundamental issue in evolutionary ecology. Various hypotheses have been suggested which generally focus on mechanisms that allow cooperative genotypes in different species to maintain interactions over space and time. Here, we emphasise the fact that even within mutualisms (interactions with net positive fitness effects for both partners), there may still be inherent costs, such as the occasional predation by ants upon aphids. Individuals engaged in mutualisms benefit from minimising these costs as long as it is not at the expense of breaking the interspecific interaction, which offers a net positive benefit. The most common and obvious defence traits to minimise interspecific interaction costs are resistance traits, which act to reduce encounter rate between two organisms. Tolerance traits, in contrast, minimise fitness costs to the actor, but without reducing encounter rate. Given that, by definition, it is beneficial to remain in mutualistic interactions, the only viable traits to minimise costs are tolerance-based 'defence' strategies. Thus, we propose that tolerance traits are an important factor promoting stability in mutualisms. Furthermore, because resistance traits tend to propagate coevolutionary arms races between antagonists, whilst tolerance traits do not, we also suggest that tolerance-based defence strategies may be important in facilitating the transition from antagonistic interactions into mutualisms. For example, the mutualism between ants and aphids has been suggested to have evolved from parasitism. We describe how phenotypic plasticity in honeydew production may be a tolerance trait that has prevented escalation into an antagonistic arms race and instead led to mutualistic coevolution.
Resumo:
A new macroporous stationary phase bearing 'tweezer' receptors that exhibit specificity for cholesterol has been constructed from rigid multifunctional vinylic monomers derived from 3,5-dibromobenzoic acid, propargyl alcohol and cholesterol. The synthesis of the novel tweezer monomer that contains two cholesterol receptor arms using palladium mediated Sonogashira methodologies and carbonate couplings is reported. The subsequent co-polymerisation of this tweezer monomer with a range of cross-linking agents via a 'pseudo' molecular imprinting approach afforded a diverse set of macroporous materials. The selectivity and efficacy of these materials for cholesterol binding was assessed using a chromatographic screening process. The optimum macroporous stationary phase material composition was subsequently used to construct monolithic solid phase extraction columns for use in the selective extraction of cholesterol from multi-component mixtures of structurally related steroids.
Resumo:
New N-(3-aminopropyl) (L-1, L-2) and (2-cyanoethyl) (L-3, L-4) derivatives of a 14-membered tetraazamacrocycle containing pyridine have been synthesized. The protonation constants of L-1 and L-2 and the stability constants of their complexes with Ni2+, Cu2+, Zn2+ and Cd2+ metal ions were determined in aqueous solutions by potentiometry, at 298.2 K and ionic strength 0.10 mol dm(-3) in KNO3. Both compounds have high overall basicity due to the presence of the aminopropyl arms. Their copper(II) complexes exhibit very high stability constants, which sharply decrease for the complexes of the other studied metal ions, as usually happens with polyamine ligands. Mono- and dinuclear complexes are formed with L-2 as well as with L-1, but the latter exhibits mononuclear complexes with slightly higher K-ML values while the dinuclear complexes of L-2 are thermodynamically more stable. The presence of these species in solution was supported by UV-VIS-NIR and EPR spectroscopic data. The single crystal structures of [Cu(H2L2)(ClO4)](3+) and [(CoLCl)-Cl-3](+) revealed that the metal centres are surrounded by the four nitrogen atoms of the macrocycle and one monodentate ligand, adopting distorted square pyramidal geometries. In the [(CoLCl)-Cl-3](+) complex, the macrocycle adopts a folded arrangement with the nitrogen atom opposite to the pyridine at the axial position while in the [Cu(H2L2)(ClO4)](3+) complex, the macrocycle adopts a planar conformation with the three aminopropyl arms located at the same side of the macrocyclic plane.
Resumo:
Two N-methylphosphonic acid derivatives of a 14-membered tetraazamacrocycle containing pyridine have been synthesized, H4L1 and H6L2. The protonation constants of these compounds and the stability constants of complexes of both ligands with Ni2+, Cu2+ and Zn2+ were determined by potentiometric methods at 298 K and ionic strength 0.10 mol dm(-3) in NMe4NO3. The high overall basicity of both compounds is ascribed to the presence of the phosphonate arms. H-1 and P-31 NMR spectroscopic titrations were performed to elucidate the sequence of protonation, which were complemented by conformational analysis studies. The complexes of these ligands have stability constants of the order of or higher than those formed with ligands having the same macrocyclic backbone but acetate arms. At pH = 7 the highest pM values were found for solutions containing the compound with three acetate groups, followed immediately by those of H6L2, however, as expected, the increasing pH favours the complexes of ligands containing phosphonate groups. The single-crystal structure of Na-2[Cu(HL1)]NO3.8H(2)O has shown that the coordination geometry around the copper atom is a distorted square pyramid. Three nitrogen atoms of the macrocyclic backbone and one oxygen atom from one methylphosphonate arm define the basal plane, and the apical coordination is accomplished via the nitrogen atom trans to the pyridine ring of the macrocycle. To achieve this geometric arrangement, the macrocycle adopts a folded conformation. This structure seems consistent with Uv-vis-NIR spectroscopy for the Ni2+ and the Cu2+ complexes and with the EPR for the latter.
Resumo:
The role of metal ions in determining the solution conformation of the Holliday junction is well established, but to date the picture of metal ion binding from structural studies of the four-way DNA junction is very incomplete. Here we present two refined structures of the Holliday junction formed by the sequence d(TCGGTACCGA) in the presence of Na+ and Ca2+, and separately with Sr2+ to resolutions of 1.85 Angstrom and 1.65 Angstrom, respectively. This sequence includes the ACC core found to promote spontaneous junction formation, but its structure has not previously been reported. Almost complete hydration spheres can be defined for each metal cation. The Na+ sites, the most convincing observation of such sites in junctions to date, are one on either face of the junction crossover region, and stabilise the ordered hydration inside the junction arms. The four Ca2+ sites in the same structure are at the CG/CG steps in the minor groove. The Sr2+ ions occupy the TC/AG, GG/CC, and TA/TA sites in the minor groove, giving ten positions forming two spines of ions, spiralling through the minor grooves within each arm of the stacked-X structure. The two structures were solved in the two different C2 lattices previously observed, with the Sr2+ derivative crystallising in the more highly symmetrical form with two-fold symmetry at its centre. Both structures show an opening of the minor groove face of the junction of 8.4degrees in the Ca2+ and Na+ containing structure, and 13.4degrees in the Sr2+ containing structure. The crossover angles at the junction are 39.3degrees and 43.3degrees, respectively. In addition to this, a relative shift in the base pair stack alignment of the arms of 2.3 Angstrom is observed for the Sr2+ containing structure only. Overall these results provide an insight into the so-far elusive stabilising ion structure for the DNA Holliday junction. (C) 2003 Elsevier Science Ltd. All rights reserved.