27 resultados para Archive Programs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This document describes the ERA-Interim Archive at ECMWF. ERA-Interim is a reanalysis of the global atmosphere covering the data-rich period since 1989, and continuing in real time. As ERA-Interim continues forward in time, updates of the Archive will take place on a monthly basis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used the PCR to study the presence of two plant pathogens in archived wheat samples from a long-term experiment started in 1843. The data were used to construct a unique 160-yr time-series of the abundance of Phaeosphaeria nodorum and Mycosphaerella graminicola, two important pathogens of wheat. During the period since 1970, the relative abundance of DNA of these two pathogens in the samples has reflected the relative importance of the two wheat diseases they cause in U.K. disease surveys. Unexpectedly, changes in the ratio of the pathogens over the 160-yr period were very strongly correlated with changes in atmospheric pollution, as measured by SO2 emissions. This finding suggests that long-term, economically important, changes in pathogen populations can be influenced by anthropogenically induced environmental changes.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the uniformization of a system of afine recurrence equations. This transformation is used in the design (or compilation) of highly parallel embedded systems (VLSI systolic arrays, signal processing filters, etc.). In this paper, we present and implement an automatic system to achieve uniformization of systems of afine recurrence equations. We unify the results from many earlier papers, develop some theoretical extensions, and then propose effective uniformization algorithms. Our results can be used in any high level synthesis tool based on polyhedral representation of nested loop computations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is generally assumed that the variability of neuronal morphology has an important effect on both the connectivity and the activity of the nervous system, but this effect has not been thoroughly investigated. Neuroanatomical archives represent a crucial tool to explore structure–function relationships in the brain. We are developing computational tools to describe, generate, store and render large sets of three–dimensional neuronal structures in a format that is compact, quantitative, accurate and readily accessible to the neuroscientist. Single–cell neuroanatomy can be characterized quantitatively at several levels. In computer–aided neuronal tracing files, a dendritic tree is described as a series of cylinders, each represented by diameter, spatial coordinates and the connectivity to other cylinders in the tree. This ‘Cartesian’ description constitutes a completely accurate mapping of dendritic morphology but it bears little intuitive information for the neuroscientist. In contrast, a classical neuroanatomical analysis characterizes neuronal dendrites on the basis of the statistical distributions of morphological parameters, e.g. maximum branching order or bifurcation asymmetry. This description is intuitively more accessible, but it only yields information on the collective anatomy of a group of dendrites, i.e. it is not complete enough to provide a precise ‘blueprint’ of the original data. We are adopting a third, intermediate level of description, which consists of the algorithmic generation of neuronal structures within a certain morphological class based on a set of ‘fundamental’, measured parameters. This description is as intuitive as a classical neuroanatomical analysis (parameters have an intuitive interpretation), and as complete as a Cartesian file (the algorithms generate and display complete neurons). The advantages of the algorithmic description of neuronal structure are immense. If an algorithm can measure the values of a handful of parameters from an experimental database and generate virtual neurons whose anatomy is statistically indistinguishable from that of their real counterparts, a great deal of data compression and amplification can be achieved. Data compression results from the quantitative and complete description of thousands of neurons with a handful of statistical distributions of parameters. Data amplification is possible because, from a set of experimental neurons, many more virtual analogues can be generated. This approach could allow one, in principle, to create and store a neuroanatomical database containing data for an entire human brain in a personal computer. We are using two programs, L–NEURON and ARBORVITAE, to investigate systematically the potential of several different algorithms for the generation of virtual neurons. Using these programs, we have generated anatomically plausible virtual neurons for several morphological classes, including guinea pig cerebellar Purkinje cells and cat spinal cord motor neurons. These virtual neurons are stored in an online electronic archive of dendritic morphology. This process highlights the potential and the limitations of the ‘computational neuroanatomy’ strategy for neuroscience databases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The orthodox approach for incentivising Demand Side Participation (DSP) programs is that utility losses from capital, installation and planning costs should be recovered under financial incentive mechanisms which aim to ensure that utilities have the right incentives to implement DSP activities. The recent national smart metering roll-out in the UK implies that this approach needs to be reassessed since utilities will recover the capital costs associated with DSP technology through bills. This paper introduces a reward and penalty mechanism focusing on residential users. DSP planning costs are recovered through payments from those consumers who do not react to peak signals. Those consumers who do react are rewarded by paying lower bills. Because real-time incentives to residential consumers tend to fail due to the negligible amounts associated with net gains (and losses) or individual users, in the proposed mechanism the regulator determines benchmarks which are matched against responses to signals and caps the level of rewards/penalties to avoid market distortions. The paper presents an overview of existing financial incentive mechanisms for DSP; introduces the reward/penalty mechanism aimed at fostering DSP under the hypothesis of smart metering roll-out; considers the costs faced by utilities for DSP programs; assesses linear rate effects and value changes; introduces compensatory weights for those consumers who have physical or financial impediments; and shows findings based on simulation runs on three discrete levels of elasticity.

Relevância:

20.00% 20.00%

Publicador: