69 resultados para Approximations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the current state of work to simplify our previous model-based methods for visual tracking of vehicles for use in a real-time system intended to provide continuous monitoring and classification of traffic from a fixed camera on a busy multi-lane motorway. The main constraints of the system design were: (i) all low level processing to be carried out by low-cost auxiliary hardware, (ii) all 3-D reasoning to be carried out automatically off-line, at set-up time. The system developed uses three main stages: (i) pose and model hypothesis using 1-D templates, (ii) hypothesis tracking, and (iii) hypothesis verification, using 2-D templates. Stages (i) & (iii) have radically different computing performance and computational costs, and need to be carefully balanced for efficiency. Together, they provide an effective way to locate, track and classify vehicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximations to the scattering of linear surface gravity waves on water of varying quiescent depth are Investigated by means of a variational approach. Previous authors have used wave modes associated with the constant depth case to approximate the velocity potential, leading to a system of coupled differential equations. Here it is shown that a transformation of the dependent variables results in a much simplified differential equation system which in turn leads to a new multi-mode 'mild-slope' approximation. Further, the effect of adding a bed mode is examined and clarified. A systematic analytic method is presented for evaluating inner products that arise and numerical experiments for two-dimensional scattering are used to examine the performance of the new approximations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method is developed for approximating the scattering of linear surface gravity waves on water of varying quiescent depth in two dimensions. A conformal mapping of the fluid domain onto a uniform rectangular strip transforms steep and discontinuous bed profiles into relatively slowly varying, smooth functions in the transformed free-surface condition. By analogy with the mild-slope approach used extensively in unmapped domains, an approximate solution of the transformed problem is sought in the form of a modulated propagating wave which is determined by solving a second-order ordinary differential equation. This can be achieved numerically, but an analytic solution in the form of a rapidly convergent infinite series is also derived and provides simple explicit formulae for the scattered wave amplitudes. Small-amplitude and slow variations in the bedform that are excluded from the mapping procedure are incorporated in the approximation by a straightforward extension of the theory. The error incurred in using the method is established by means of a rigorous numerical investigation and it is found that remarkably accurate estimates of the scattered wave amplitudes are given for a wide range of bedforms and frequencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive general analytic approximations for pricing European basket and rainbow options on N assets. The key idea is to express the option’s price as a sum of prices of various compound exchange options, each with different pairs of subordinate multi- or single-asset options. The underlying asset prices are assumed to follow lognormal processes, although our results can be extended to certain other price processes for the underlying. For some multi-asset options a strong condition holds, whereby each compound exchange option is equivalent to a standard single-asset option under a modified measure, and in such cases an almost exact analytic price exists. More generally, approximate analytic prices for multi-asset options are derived using a weak lognormality condition, where the approximation stems from making constant volatility assumptions on the price processes that drive the prices of the subordinate basket options. The analytic formulae for multi-asset option prices, and their Greeks, are defined in a recursive framework. For instance, the option delta is defined in terms of the delta relative to subordinate multi-asset options, and the deltas of these subordinate options with respect to the underlying assets. Simulations test the accuracy of our approximations, given some assumed values for the asset volatilities and correlations. Finally, a calibration algorithm is proposed and illustrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article expresses the price of a spread option as the sum of the prices of two compound options. One compound option is to exchange vanilla call options on the two underlying assets and the other is to exchange the corresponding put options. This way we derive a new closed form approximation for the price of a European spread option and a corresponding approximation for each of its price, volatility and correlation hedge ratios. Our approach has many advantages over existing analytical approximations, which have limited validity and an indeterminacy that renders them of little practical use. The compound exchange option approximation for European spread options is then extended to American spread options on assets that pay dividends or incur costs. Simulations quantify the accuracy of our approach; we also present an empirical application to the American crack spread options that are traded on NYMEX. For illustration, we compare our results with those obtained using the approximation attributed to Kirk (1996, Correlation in energy markets. In: V. Kaminski (Ed.), Managing Energy Price Risk, pp. 71–78 (London: Risk Publications)), which is commonly used by traders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural field models of firing rate activity typically take the form of integral equations with space-dependent axonal delays. Under natural assumptions on the synaptic connectivity we show how one can derive an equivalent partial differential equation (PDE) model that properly treats the axonal delay terms of the integral formulation. Our analysis avoids the so-called long-wavelength approximation that has previously been used to formulate PDE models for neural activity in two spatial dimensions. Direct numerical simulations of this PDE model show instabilities of the homogeneous steady state that are in full agreement with a Turing instability analysis of the original integral model. We discuss the benefits of such a local model and its usefulness in modeling electrocortical activity. In particular, we are able to treat “patchy” connections, whereby a homogeneous and isotropic system is modulated in a spatially periodic fashion. In this case the emergence of a “lattice-directed” traveling wave predicted by a linear instability analysis is confirmed by the numerical simulation of an appropriate set of coupled PDEs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gauss–Newton algorithm is an iterative method regularly used for solving nonlinear least squares problems. It is particularly well suited to the treatment of very large scale variational data assimilation problems that arise in atmosphere and ocean forecasting. The procedure consists of a sequence of linear least squares approximations to the nonlinear problem, each of which is solved by an “inner” direct or iterative process. In comparison with Newton’s method and its variants, the algorithm is attractive because it does not require the evaluation of second-order derivatives in the Hessian of the objective function. In practice the exact Gauss–Newton method is too expensive to apply operationally in meteorological forecasting, and various approximations are made in order to reduce computational costs and to solve the problems in real time. Here we investigate the effects on the convergence of the Gauss–Newton method of two types of approximation used commonly in data assimilation. First, we examine “truncated” Gauss–Newton methods where the inner linear least squares problem is not solved exactly, and second, we examine “perturbed” Gauss–Newton methods where the true linearized inner problem is approximated by a simplified, or perturbed, linear least squares problem. We give conditions ensuring that the truncated and perturbed Gauss–Newton methods converge and also derive rates of convergence for the iterations. The results are illustrated by a simple numerical example. A practical application to the problem of data assimilation in a typical meteorological system is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The no response test is a new scheme in inverse problems for partial differential equations which was recently proposed in [D. R. Luke and R. Potthast, SIAM J. Appl. Math., 63 (2003), pp. 1292–1312] in the framework of inverse acoustic scattering problems. The main idea of the scheme is to construct special probing waves which are small on some test domain. Then the response for these waves is constructed. If the response is small, the unknown object is assumed to be a subset of the test domain. The response is constructed from one, several, or many particular solutions of the problem under consideration. In this paper, we investigate the convergence of the no response test for the reconstruction information about inclusions D from the Cauchy values of solutions to the Helmholtz equation on an outer surface $\partial\Omega$ with $\overline{D} \subset \Omega$. We show that the one‐wave no response test provides a criterion to test the analytic extensibility of a field. In particular, we investigate the construction of approximations for the set of singular points $N(u)$ of the total fields u from one given pair of Cauchy data. Thus, the no response test solves a particular version of the classical Cauchy problem. Also, if an infinite number of fields is given, we prove that a multifield version of the no response test reconstructs the unknown inclusion D. This is the first convergence analysis which could be achieved for the no response test.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data assimilation – the set of techniques whereby information from observing systems and models is combined optimally – is rapidly becoming prominent in endeavours to exploit Earth Observation for Earth sciences, including climate prediction. This paper explains the broad principles of data assimilation, outlining different approaches (optimal interpolation, three-dimensional and four-dimensional variational methods, the Kalman Filter), together with the approximations that are often necessary to make them practicable. After pointing out a variety of benefits of data assimilation, the paper then outlines some practical applications of the exploitation of Earth Observation by data assimilation in the areas of operational oceanography, chemical weather forecasting and carbon cycle modelling. Finally, some challenges for the future are noted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The literature on vertical disparity is complicated by the fact that several different definitions of the term “vertical disparity” are in common use, often without a clear statement about which is intended or a widespread appreciation of the properties of the different definitions. Here, we examine two definitions of retinal vertical disparity: elevation-latitude and elevation-longitude disparities. Near the fixation point, these definitions become equivalent, but in general, they have quite different dependences on object distance and binocular eye posture, which have not previously been spelt out. We present analytical approximations for each type of vertical disparity, valid for more general conditions than previous derivations in the literature: we do not restrict ourselves to objects near the fixation point or near the plane of regard, and we allow for non-zero torsion, cyclovergence, and vertical misalignments of the eyes. We use these expressions to derive estimates of the latitude and longitude vertical disparities expected at each point in the visual field, averaged over all natural viewing. Finally, we present analytical expressions showing how binocular eye position—gaze direction, convergence, torsion, cyclovergence, and vertical misalignment—can be derived from the vertical disparity field and its derivatives at the fovea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effective medium approximations for the frequency-dependent and complex-valued effective stiffness tensors of cracked/ porous rocks with multiple solid constituents are developed on the basis of the T-matrix approach (based on integral equation methods for quasi-static composites), the elastic - viscoelastic correspondence principle, and a unified treatment of the local and global flow mechanisms, which is consistent with the principle of fluid mass conservation. The main advantage of using the T-matrix approach, rather than the first-order approach of Eshelby or the second-order approach of Hudson, is that it produces physically plausible results even when the volume concentrations of inclusions or cavities are no longer small. The new formulae, which operates with an arbitrary homogeneous (anisotropic) reference medium and contains terms of all order in the volume concentrations of solid particles and communicating cavities, take explicitly account of inclusion shape and spatial distribution independently. We show analytically that an expansion of the T-matrix formulae to first order in the volume concentration of cavities (in agreement with the dilute estimate of Eshelby) has the correct dependence on the properties of the saturating fluid, in the sense that it is consistent with the Brown-Korringa relation, when the frequency is sufficiently low. We present numerical results for the (anisotropic) effective viscoelastic properties of a cracked permeable medium with finite storage porosity, indicating that the complete T-matrix formulae (including the higher-order terms) are generally consistent with the Brown-Korringa relation, at least if we assume the spatial distribution of cavities to be the same for all cavity pairs. We have found an efficient way to treat statistical correlations in the shapes and orientations of the communicating cavities, and also obtained a reasonable match between theoretical predictions (based on a dual porosity model for quartz-clay mixtures, involving relatively flat clay-related pores and more rounded quartz-related pores) and laboratory results for the ultrasonic velocity and attenuation spectra of a suite of typical reservoir rocks. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate thin films of cylinder-forming diblock copolymer confined between electrically charged parallel plates, using self-consistent-field theory ( SCFT) combined with an exact treatment for linear dielectric materials. Our study focuses on the competition between the surface interactions, which tend to orient cylinder domains parallel to the plates, and the electric field, which favors a perpendicular orientation. The effect of the electric field on the relative stability of the competing morphologies is demonstrated with equilibrium phase diagrams, calculated with the aid of a weak-field approximation. As hoped, modest electric fields are shown to have a significant stabilizing effect on perpendicular cylinders, particularly for thicker films. Our improved SCFT-based treatment removes most of the approximations implemented by previous approaches, thereby managing to resolve outstanding qualitative inconsistencies among different approximation schemes.