29 resultados para Algerian Sahara
Resumo:
Measurements of the top‐of‐the‐atmosphere outgoing longwave radiation (OLR) for July 2003 from Meteosat‐7 are used to assess the performance of the numerical weather prediction version of the Met Office Unified Model. A significant difference is found over desert regions of northern Africa where the model emits too much OLR by up to 35 Wm−2 in the monthly mean. By cloud‐screening the data we find an error of up to 50 Wm−2 associated with cloud‐free areas, which suggests an error in the model surface temperature, surface emissivity, or atmospheric transmission. By building up a physical model of the radiative properties of mineral dust based on in situ, and surface‐based and satellite remote sensing observations we show that the most plausible explanation for the discrepancy in OLR is due to the neglect of mineral dust in the model. The calculations suggest that mineral dust can exert a longwave radiative forcing by as much as 50 Wm−2 in the monthly mean for 1200 UTC in cloud‐free regions, which accounts for the discrepancy between the model and the Meteosat‐7 observations. This suggests that inclusion of the radiative effects of mineral dust will lead to a significant improvement in the radiation balance of numerical weather prediction models with subsequent improvements in performance.
Resumo:
As a result of climate change over the past 5000 years the Sahara changed from savannah to a desert landscape. The beds of ancient lakes are home to snail shells and the petrified roots of trees and shrubs. Examples of human occupation can also be seen in the form of fireplaces and discarded tools. Examination of the geological history of these sites can give a clearer picture of how the climate changed and how humans coped with these changes.
Resumo:
The Fazzan Basin of south-west Libya is at present arid with less than 20 mm of rainfall per annum. However, regionally extensive limestones, lacustrine sands and coquina (fossiliferous carbonate rock) deposits show that the Fazzan Basin previously contained a large palaeolake, indicating that the climate in the past was more humid. Optically stimulated luminescence (OSL) dating techniques have been applied to key lacustrine deposits within the basin in an attempt to provide an internally consistent chronology for this humidity record. Results indicate that palaeolake sediments within the Fazzan Basin record a very long history of palacohydrological change, ranging from present day and conditions to humidity capable of sustaining a lake with an approximate area of 76,250 km(2). The existence of humid periods in mid oxygen isotope stage 5 and the early Holocene is confirmed. An older lacustrine event, tentatively correlated to oxygen isotope stage 11, is also recognized. In addition, evidence is presented for at least two humid phases beyond the age range over which the conventional OSL dating technique is applicable. This study demonstrates that OSL dating of palaeolake sediments within the Fazzan Basin offers the potential to provide a detailed record of North African humidity spanning several glacial-interglacial cycles. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
As a result of climate change over the past 5000 years the Sahara changed from savannah to a desert landscape. The beds of ancient lakes are home to snail shells and the petrified roots of trees and shrubs. Examples of human occupation can also be seen in the form of fireplaces and discarded tools. Examination of the geological history of these sites can give a clearer picture of how the climate changed and how humans coped with these changes.
Resumo:
Evidence increasingly suggests that sub-Saharan Africa is at the center of human evolution and understanding routes of dispersal “out of Africa” is thus becoming increasingly important. The Sahara Desert is considered by many to be an obstacle to these dispersals and a Nile corridor route has been proposed to cross it. Here we provide evidence that the Sahara was not an effective barrier and indicate how both animals and humans populated it during past humid phases. Analysis of the zoogeography of the Sahara shows that more animals crossed via this route than used the Nile corridor. Furthermore, many of these species are aquatic. This dispersal was possible because during the Holocene humid period the region contained a series of linked lakes, rivers, and inland deltas comprising a large interlinked waterway, channeling water and animals into and across the Sahara, thus facilitating these dispersals. This system was last active in the early Holocene when many species appear to have occupied the entire Sahara. However, species that require deep water did not reach northern regions because of weak hydrological connections. Human dispersals were influenced by this distribution; Nilo-Saharan speakers hunting aquatic fauna with barbed bone points occupied the southern Sahara, while people hunting Savannah fauna with the bow and arrow spread southward. The dating of lacustrine sediments show that the “green Sahara” also existed during the last interglacial (∼125 ka) and provided green corridors that could have formed dispersal routes at a likely time for the migration of modern humans out of Africa.
Resumo:
The Fennec climate program aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE Falcon 20 is described, with specific focus on instrumentation specially developed and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include: (1) the first airborne measurement of dust particles sized up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in-situ observations of processes in SABL clouds showing dust acting as CCN and IN at −15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold-pool (haboob) issued from deep convection over the Atlas, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area measurements suggest coarser particles provide a route for ozone depletion, (9) discrepancies between airborne coarse mode size distributions and AERONET sunphotometer retrievals under light dust loadings. These results provide insights into boundary layer and dust processes in the SHL region – a region of substantial global climatic importance.
Resumo:
The first size-resolved airborne measurements of dust fluxes and the first dust flux measurements from the central Sahara are presented and compared with a parameterization by Kok (2011a). High-frequency measurements of dust size distribution were obtained from 0.16 to 300 µm diameter, and eddy covariance fluxes were derived. This is more than an order of magnitude larger size range than previous flux estimates. Links to surface emission are provided by analysis of particle drift velocities. Number flux is described by a −2 power law between 1 and 144 µm diameter, significantly larger than the 12 µm upper limit suggested by Kok (2011a). For small particles, the deviation from a power law varies with terrain type and the large size cutoff is correlated with atmospheric vertical turbulent kinetic energy, suggesting control by vertical transport rather than emission processes. The measured mass flux mode is in the range 30–100 µm. The turbulent scales important for dust flux are from 0.1 km to 1–10 km. The upper scale increases during the morning as boundary layer depth and eddy size increase. All locations where large dust fluxes were measured had large topographical variations. These features are often linked with highly erodible surface features, such as wadis or dunes. We also hypothesize that upslope flow and flow separation over such features enhance the dust flux by transporting large particles out of the saltation layer. The tendency to locate surface flux measurements in open, flat terrain means these favored dust sources have been neglected in previous studies.
Resumo:
Aeolian mineral dust aerosol is an important consideration in the Earth's radiation budget as well as a source of nutrients to oceanic and land biota. The modelling of aeolian mineral dust has been improving consistently despite the relatively sparse observations to constrain them. This study documents the development of a new dust emissions scheme in the Met Office Unified ModelTM (MetUM) based on the Dust Entrainment and Deposition (DEAD) module. Four separate case studies are used to test and constrain the model output. Initial testing was undertaken on a large dust event over North Africa in March 2006 with the model constrained using AERONET data. The second case study involved testing the capability of the model to represent dust events in the Middle East without being re-tuned from the March 2006 case in the Sahara. While the model is unable to capture some of the daytime variation in AERONET AOD there is good agreement between the model and observed dust events. In the final two case studies new observations from in situ aircraft data during the Dust Outflow and Deposition to the Ocean (DODO) campaigns in February and August 2006 were used. These recent observations provided further data on dust size distributions and vertical profiles to constrain the model. The modelled DODO cases were also compared to AERONET data to make sure the radiative properties of the dust were comparable to observations. Copyright © 2009 Royal Meteorological Society and Crown Copyright
Resumo:
Mineral dust is an important aerosol species in the Earth’s atmosphere and has a major source within North Africa, of which the Sahara forms the major part. Aerosol Time of Flight Mass Spectrometry (ATOFMS) is first used to determine the mixing state of dust particles collected from the land surface in the Saharan region, showing low abundance of species such as nitrate and sulphate internally mixed with the dust mineral matrix. These data are then compared with the ATOFMS single particle mass spectra of Saharan dust particles detected in the marine atmosphere in the vicinity of the Cape Verde islands, which are further compared with those from particles with longer atmospheric residence sampled at a coastal station at Mace Head, Ireland. Saharan dust particles collected near the Cape Verde Islands showed increased internally mixed nitrate but no sulphate, whilst Saharan dust particles collected on the coast of Ireland showed a very high degree of internally mixed secondary species including nitrate, sulphate and methanesulphonate. This uptake of secondary species will change the pH and hygroscopic properties of the aerosol dust and thus can influence the budgets of other reactive gases, as well as influencing the radiative properties of the particles and the availability of metals for dissolution.
Resumo:
The atmospheric component of the United Kingdom’s new High-resolution Global Environmental Model (HiGEM) has been run with interactive aerosol schemes that include biomass burning and mineral dust. Dust emission, transport, and deposition are parameterized within the model using six particle size divisions, which are treated independently. The biomass is modeled in three nonindependent modes, and emissions are prescribed from an external dataset. The model is shown to produce realistic horizontal and vertical distributions of these aerosols for each season when compared with available satellite- and ground-based observations and with other models. Combined aerosol optical depths off the coast of North Africa exceed 0.5 both in boreal winter, when biomass is the main contributor, and also in summer, when the dust dominates. The model is capable of resolving smaller-scale features, such as dust storms emanating from the Bode´ le´ and Saharan regions of North Africa and the wintertime Bode´ le´ low-level jet. This is illustrated by February and July case studies, in which the diurnal cycles of model variables in relation to dust emission and transport are examined. The top-of-atmosphere annual mean radiative forcing of the dust is calculated and found to be globally quite small but locally very large, exceeding 20 W m22 over the Sahara, where inclusion of dust aerosol is shown to improve the model radiative balance. This work extends previous aerosol studies by combining complexity with increased global resolution and represents a step toward the next generation of models to investigate aerosol–climate interactions. 1. Introduction Accurate modeling of mineral dust is known to be important because of its radiative impact in both numerical weather prediction models (Milton et al. 2008; Haywood et
Resumo:
The Geostationary Earth Radiation Budget Intercomparison of Longwave and Shortwave radiation (GERBILS) was an observational field experiment over North Africa during June 2007. The campaign involved 10 flights by the FAAM BAe-146 research aircraft over southwestern parts of the Sahara Desert and coastal stretches of the Atlantic Ocean. Objectives of the GERBILS campaign included characterisation of mineral dust geographic distribution and physical and optical properties, assessment of the impact upon radiation, validation of satellite remote sensing retrievals, and validation of numerical weather prediction model forecasts of aerosol optical depths (AODs) and size distributions. We provide the motivation behind GERBILS and the experimental design and report the progress made in each of the objectives. We show that mineral dust in the region is relatively non-absorbing (mean single scattering albedo at 550 nm of 0.97) owing to the relatively small fraction of iron oxides present (1–3%), and that detailed spectral radiances are most accurately modelled using irregularly shaped particles. Satellite retrievals over bright desert surfaces are challenging owing to the lack of spectral contrast between the dust and the underlying surface. However, new techniques have been developed which are shown to be in relatively good agreement with AERONET estimates of AOD and with each other. This encouraging result enables relatively robust validation of numerical models which treat the production, transport, and deposition of mineral dust. The dust models themselves are able to represent large-scale synoptically driven dust events to a reasonable degree, but some deficiencies remain both in the Sahara and over the Sahelian region, where cold pool outflow from convective cells associated with the intertropical convergence zone can lead to significant dust production.
Resumo:
Satellite data are used to quantify and examine the bias in the outgoing long-wave (LW) radiation over North Africa during May–July simulated by a range of climate models and the Met Office global numerical weather prediction (NWP) model. Simulations from an ensemble-mean of multiple climate models overestimate outgoing clear-sky long-wave radiation (LWc) by more than 20 W m−2 relative to observations from Clouds and the Earth's Radiant Energy System (CERES) for May–July 2000 over parts of the west Sahara, and by 9 W m−2 for the North Africa region (20°W–30°E, 10–40°N). Experiments with the atmosphere-only version of the High-resolution Hadley Centre Global Environment Model (HiGEM), suggest that including mineral dust radiative effects removes this bias. Furthermore, only by reducing surface temperature and emissivity by unrealistic amounts is it possible to explain the magnitude of the bias. Comparing simulations from the Met Office NWP model with satellite observations from Geostationary Earth Radiation Budget (GERB) instruments suggests that the model overestimates the LW by 20–40 W m−2 during North African summer. The bias declines over the period 2003–2008, although this is likely to relate to improvements in the model and inhomogeneity in the satellite time series. The bias in LWc coincides with high aerosol dust loading estimated from the Ozone Monitoring Instrument (OMI), including during the GERBILS field campaign (18–28 June 2007) where model overestimates in LWc greater than 20 W m−2 and OMI-estimated aerosol optical depth (AOD) greater than 0.8 are concurrent around 20°N, 0–20°W. A model-minus-GERB LW bias of around 30 W m−2 coincides with high AOD during the period 18–21 June 2007, although differences in cloud cover also impact the model–GERB differences. Copyright © Royal Meteorological Society and Crown Copyright, 2010