89 resultados para Achene yield
Resumo:
Many modelling studies examine the impacts of climate change on crop yield, but few explore either the underlying bio-physical processes, or the uncertainty inherent in the parameterisation of crop growth and development. We used a perturbed-parameter crop modelling method together with a regional climate model (PRECIS) driven by the 2071-2100 SRES A2 emissions scenario in order to examine processes and uncertainties in yield simulation. Crop simulations used the groundnut (i.e. peanut; Arachis hypogaea L.) version of the General Large-Area Model for annual crops (GLAM). Two sets of GLAM simulations were carried out: control simulations and fixed-duration simulations, where the impact of mean temperature on crop development rate was removed. Model results were compared to sensitivity tests using two other crop models of differing levels of complexity: CROPGRO, and the groundnut model of Hammer et al. [Hammer, G.L., Sinclair, T.R., Boote, K.J., Wright, G.C., Meinke, H., and Bell, M.J., 1995, A peanut simulation model: I. Model development and testing. Agron. J. 87, 1085-1093]. GLAM simulations were particularly sensitive to two processes. First, elevated vapour pressure deficit (VPD) consistently reduced yield. The same result was seen in some simulations using both other crop models. Second, GLAM crop duration was longer, and yield greater, when the optimal temperature for the rate of development was exceeded. Yield increases were also seen in one other crop model. Overall, the models differed in their response to super-optimal temperatures, and that difference increased with mean temperature; percentage changes in yield between current and future climates were as diverse as -50% and over +30% for the same input data. The first process has been observed in many crop experiments, whilst the second has not. Thus, we conclude that there is a need for: (i) more process-based modelling studies of the impact of VPD on assimilation, and (ii) more experimental studies at super-optimal temperatures. Using the GLAM results, central values and uncertainty ranges were projected for mean 2071-2100 crop yields in India. In the fixed-duration simulations, ensemble mean yields mostly rose by 10-30%. The full ensemble range was greater than this mean change (20-60% over most of India). In the control simulations, yield stimulation by elevated CO2 was more than offset by other processes-principally accelerated crop development rates at elevated, but sub-optimal, mean temperatures. Hence, the quantification of uncertainty can facilitate relatively robust indications of the likely sign of crop yield changes in future climates. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Results of a large-scale survey of resource-poor smallholder cotton farmers in South Africa over three years conclusively show that adopters of Bt cotton have benefited in terms of higher yields, lower pesticide use, less labour for pesticide application and substantially higher gross margins per hectare. These benefits were clearly related to the technology, and not to preferential adoption by farmers who were already highly efficient. The smallest producers are shown to have benefited from adoption of the Bt variety as much as, if not more than, larger producers. Moreover, evidence from hospital records suggests a link between declining pesticide poisonings and adoption of the Bt variety.
Resumo:
Long-term indicators of soil fertility were assessed by measuring grain yield, soil organic carbon (SOC) and soil Olsen phosphorous for a P-deficient soil. In one set of treatments, goat manure was applied annually for 13 years at 0, 5 and 10 t ha(-1), and intercrops of sorghum/cowpea, millet/green gram and maize/pigeonpea were grown. Yield depended on rainfall and trends with time were not identifiable. Manure caused an upward trend in SOC, but 10 t ha(-1) manure did not give significantly more SOC than 5 t ha(-1). Only 10 t ha(-1) manure increased Olsen P. Measurements of both SOC and Olsen P are recommended. In another set of treatments, manure was applied for four years; the residual effect lasted another seven to eight years when assessed by yield, SOC and Olsen P Treatment with mineral fertilizers provided the same rates of N and P as 5 t hat manure and yields from manure and fertilizer were similar. Fertilizer increased Olsen P but not SOC. Management systems with occasional manure application and intermediate fertilizer applications should be assessed. Inputs and offtakes of C, N and P were measured for three years. Approximately 16, 25 and 11% of C, N and P respectively were stabilized into soil organic matter from 5 t ha(-1) a(-1) manure. The majority of organic P was fixed as soil inorganic P.
Resumo:
The sustainability of cereal/legume intercropping was assessed by monitoring trends in grain yield, soil organic C (SOC) and soil extractable P (Olsen method) measured over 13 years at a long-term field trial on a P-deficient soil in semi-arid Kenya. Goat manure was applied annually for 13 years at 0, 5 and 10 t ha(-1) and trends in grain yield were not identifiable because of season-to-season variations. SOC and Olsen P increased for the first seven years of manure application and then remained constant. The residual effect of manure applied for four years only lasted another seven to eight years when assessed by yield, SOC and Olsen P. Mineral fertilizers provided the same annual rates of N and P as in 5 t ha(-1) manure and initially ,gave the same yield as manure, declining after nine years to about 80%. Therefore, manure applications could be made intermittently and nutrient requirements topped-up with fertilizers. Grain yields for sorghum with continuous manure were described well by correlations with rainfall and manure input only, if data were excluded for seasons with over 500 mm rainfall. A comprehensive simulation model should correctly describe crop losses caused by excess water.
Resumo:
Tomato plants (Lycopersicon esculentum Mill. 'DRK') were grown hydroponically in two experiments to determine the effects of nutrient concentration and distribution in the root zone on yield, quality and blossom end rot (BER). The plants were grown in rockwool with their root systems divided into two portions. Each portion was irrigated with nutrient solutions with either the same or different electrical conductivity (EC) in the range 0 to 6 dS m(-1). In both experiments, fruit yields decreased as EC increased from moderate to high when solutions of equal concentration were applied to both portions of the root system. However, higher yields were obtained when a solution with high EC was applied to one portion of the root system and a solution of low EC to the other portion. For example, the fresh weight of mature fruits in the 6/6 treatment was only 20% that of the 3/3 treatment but the 6/0 treatment had a yield that was 40% higher. The reduction in yield in the high EC treatments was due to an increase in the number of fruits with BER and smaller fruit size. BER increased from 12% to 88% of total fruits as EC increased from 6/0 to 6/6 and fruit length decreased from 67 mm to 52 mm. Fruit quality (expressed as titratable acidity and soluble solids) increased as EC increased. In summary, high yields of high quality tomatoes with minimal incidence of BER were obtained when one portion of the root system was supplied with a solution of high EC and the other portion with a solution of moderate or zero EC.
Resumo:
Tomato plants (Lycopersicon esculentum Mill. var. DRK) were grown with a split root system to determine the effect of an unequal distribution of salinity in the root zone on yield and quality. The roots of the plant were divided into two portions and each portion was irrigated with nutrient solutions differing in EC levels achieved by adding Na or K. The maximum yield was observed in treatments with unequal EC when one portion of the roots received only water and the lowest in the high EC treatments. The reduced yield in the high EC treatment was due to the incidence of blossom-end rot and reduced fruit size. Fruit size in the treatments receiving solutions of unequal EC was up to 12% greater than that in the control. No significant differences were found in soluble solids and acidity between control and all other unequal EC treatments. Ca concentration was significantly higher in the treatments where one portion of the root system received water. It was concluded that high salinity had positive effects on yield and quality provided that one portion of the root system were placed in low EC or only water.
Resumo:
Results of a large-scale survey of resource-poor smallholder cotton farmers in South Africa over three years conclusively show that adopters of Bt cotton have benefited in terms of higher yields, lower pesticide use, less labour for pesticide application and substantially higher gross margins per hectare. These benefits were clearly related to the technology, and not to preferential adoption by farmers who were already highly efficient. The smallest producers are shown to have benefited from adoption of the Bt variety as much as, if not more than, larger producers. Moreover, evidence from hospital records suggests a link between declining pesticide poisonings and adoption of the Bt variety.
Resumo:
This study aimed to establish relationships between maize yield and rainfall on different temporal and spatial scales, in order to provide a basis for crop monitoring and modelling. A 16-year series of maize yield and daily rainfall from 11 municipalities and micro-regions of Rio Grande do Sul State was used. Correlation and regression analyses were used to determine associations between crop yield and rainfall for the entire crop cycle, from tasseling to 30 days after, and from 5 days before tasseling to 40 days after. Close relationships between maize yield and rainfall were found, particularly during the reproductive period (45-day period comprising the flowering and grain filling). Relationships were closer on a regional scale than at smaller scales. Implications of the crop-rainfall relationships for crop modelling are discussed.
Resumo:
Process-based integrated modelling of weather and crop yield over large areas is becoming an important research topic. The production of the DEMETER ensemble hindcasts of weather allows this work to be carried out in a probabilistic framework. In this study, ensembles of crop yield (groundnut, Arachis hypogaea L.) were produced for 10 2.5 degrees x 2.5 degrees grid cells in western India using the DEMETER ensembles and the general large-area model (GLAM) for annual crops. Four key issues are addressed by this study. First, crop model calibration methods for use with weather ensemble data are assessed. Calibration using yield ensembles was more successful than calibration using reanalysis data (the European Centre for Medium-Range Weather Forecasts 40-yr reanalysis, ERA40). Secondly, the potential for probabilistic forecasting of crop failure is examined. The hindcasts show skill in the prediction of crop failure, with more severe failures being more predictable. Thirdly, the use of yield ensemble means to predict interannual variability in crop yield is examined and their skill assessed relative to baseline simulations using ERA40. The accuracy of multi-model yield ensemble means is equal to or greater than the accuracy using ERA40. Fourthly, the impact of two key uncertainties, sowing window and spatial scale, is briefly examined. The impact of uncertainty in the sowing window is greater with ERA40 than with the multi-model yield ensemble mean. Subgrid heterogeneity affects model accuracy: where correlations are low on the grid scale, they may be significantly positive on the subgrid scale. The implications of the results of this study for yield forecasting on seasonal time-scales are as follows. (i) There is the potential for probabilistic forecasting of crop failure (defined by a threshold yield value); forecasting of yield terciles shows less potential. (ii) Any improvement in the skill of climate models has the potential to translate into improved deterministic yield prediction. (iii) Whilst model input uncertainties are important, uncertainty in the sowing window may not require specific modelling. The implications of the results of this study for yield forecasting on multidecadal (climate change) time-scales are as follows. (i) The skill in the ensemble mean suggests that the perturbation, within uncertainty bounds, of crop and climate parameters, could potentially average out some of the errors associated with mean yield prediction. (ii) For a given technology trend, decadal fluctuations in the yield-gap parameter used by GLAM may be relatively small, implying some predictability on those time-scales.
Resumo:
Estimates of the response of crops to climate change rarely quantify the uncertainty inherent in the simulation of both climate and crops. We present a crop simulation ensemble for a location in India, perturbing the response of both crop and climate under both baseline (12 720 simulations) and doubled-CO2 (171720 simulations) climates. Some simulations used parameter values representing genotypic adaptation to mean temperature change. Firstly, observed and simulated yields in the baseline climate were compared. Secondly, the response of yield to changes in mean temperature was examined and compared to that found in the literature. No consistent response to temperature change was found across studies. Thirdly, the relative contribution of uncertainty in crop and climate simulation to the total uncertainty in projected yield changes was examined. In simulations without genotypic adaptation, most of the uncertainty came from the climate model parameters. Comparison with the simulations with genotypic adaptation and with a previous study suggested that the relatively low crop parameter uncertainty derives from the observational constraints on the crop parameters used in this study. Fourthly, the simulations were used, together with an observed dataset and a simple analysis of crop cardinal temperatures and thermal time, to estimate the potential for adaptation using existing cultivars. The results suggest that the germplasm for complete adaptation of groundnut cultivation in western India to a doubled-CO2 environment may not exist. In conjunction with analyses of germplasm and local management
Resumo:
Reanalysis data provide an excellent test bed for impacts prediction systems. because they represent an upper limit on the skill of climate models. Indian groundnut (Arachis hypogaea L.) yields have been simulated using the General Large-Area Model (GLAM) for annual crops and the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-yr reanalysis (ERA-40). The ability of ERA-40 to represent the Indian summer monsoon has been examined. The ability of GLAM. when driven with daily ERA-40 data, to model both observed yields and observed relationships between subseasonal weather and yield has been assessed. Mean yields "were simulated well across much of India. Correlations between observed and modeled yields, where these are significant. are comparable to correlations between observed yields and ERA-40 rainfall. Uncertainties due to the input planting window, crop duration, and weather data have been examined. A reduction in the root-mean-square error of simulated yields was achieved by applying bias correction techniques to the precipitation. The stability of the relationship between weather and yield over time has been examined. Weather-yield correlations vary on decadal time scales. and this has direct implications for the accuracy of yield simulations. Analysis of the skewness of both detrended yields and precipitation suggest that nonclimatic factors are partly responsible for this nonstationarity. Evidence from other studies, including data on cereal and pulse yields, indicates that this result is not particular to groundnut yield. The detection and modeling of nonstationary weather-yield relationships emerges from this study as an important part of the process of understanding and predicting the impacts of climate variability and change on crop yields.
Resumo:
The impacts of climate change on crop productivity are often assessed using simulations from a numerical climate model as an input to a crop simulation model. The precision of these predictions reflects the uncertainty in both models. We examined how uncertainty in a climate (HadAM3) and crop General Large-Area Model (GLAM) for annual crops model affects the mean and standard deviation of crop yield simulations in present and doubled carbon dioxide (CO2) climates by perturbation of parameters in each model. The climate sensitivity parameter (lambda, the equilibrium response of global mean surface temperature to doubled CO2) was used to define the control climate. Observed 1966-1989 mean yields of groundnut (Arachis hypogaea L.) in India were simulated well by the crop model using the control climate and climates with values of lambda near the control value. The simulations were used to measure the contribution to uncertainty of key crop and climate model parameters. The standard deviation of yield was more affected by perturbation of climate parameters than crop model parameters in both the present-day and doubled CO2 climates. Climate uncertainty was higher in the doubled CO2 climate than in the present-day climate. Crop transpiration efficiency was key to crop model uncertainty in both present-day and doubled CO2 climates. The response of crop development to mean temperature contributed little uncertainty in the present-day simulations but was among the largest contributors under doubled CO2. The ensemble methods used here to quantify physical and biological uncertainty offer a method to improve model estimates of the impacts of climate change.