23 resultados para 3-7-1
Resumo:
The AB, monomer, 3,5-bis(3-hydroxylprop-1-ynyl)benzoic acid 1, has been synthesized using a Sonogashira cross-coupling with a palladium catalyst system developed for use with deactivated aryl halides. Numerous condensation methods have then been assessed in the homopolymerization of the acid-diol monomer 1 to afford hyperbranched polyesters. However, as a result of the thermal instability of the monomer, direct thermal polymerizations could not be employed. Alternative approaches using carbodiimide-coupling reagents enabled the production of soluble polyesters possessing molecular weights and degrees of branching ranging from 2500 to 11,000 and 0.22 to 0.33, respectively. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Conjugate addition of lithium dibenzylamide to tert-butyl (+/-)-3-methylcyclopentene-1-carboxylate occurs with high levels of stereocontrol, with preferential addition of lithium dibenzylamide to the face of the cyclic alpha,beta-unsaturated acceptor anti- to the 3-methyl substituent. High levels of enantiorecognition are observed between tert-butyl (+/-)-3-methylcyclopentene-1-carboxylate and an excess of lithium (+/-)-N-benzyl-N-alpha-methylbenzylamide (10 eq.) (E > 140) in their mutual kinetic resolution, while the kinetic resolution of tert-butyl (+/-)-3-methylcyclopentene-1-carboxylate with lithium (S)-N-benzyl-N-alpha-methylbenzylamide proceeds to give, at 51% conversion, tert-butyl (1R, 2S, 3R,alphaS)-3-methyl-2-N-benzyl-N-alpha-methylbenzylaminocyclopentane-1-c arboxylate consistent with E > 130, and in 39% yield and 99 +/- 0.5% de after purification. Subsequent deprotection by hydrogenolysis and ester hydrolysis gives (1R, 2S, 3R)-3-methylcispentacin in > 98% de and 98 +/- 1% ee. Selective epimerisation of tert-butyl (1R, 2S, 3R, alphaS)-3-methyl-2-N- benzyl-N-alpha-methylbenzylaminocyclopentane-1-carboxylate by treatment with (KOBu)-Bu-t in (BuOH)-Bu-t gives tert-butyl (1S, 2S, 3R, alphaS)-3-methyl-2-N-benzyl-N-alpha-methylbenzylaminocyclopentane-1-carb oxylate in quantitative yield and in > 98% de, with subsequent deprotection by hydrogenolysis and ester hydrolysis giving (1S, 2S, 3R)-3-methyltranspentacin hydrochloride in > 98% de and 97 +/- 1% ee.
Resumo:
The night-time atmospheric chemistry of the biogenic volatile organic compounds (Z)-hex-4-en-1-ol, (Z)-hex-3-en-1-ol ('leaf alcohol'), (E)-hex-3-en-1-ol, (Z)-hex-2-en-1-ol and (E)-hex-2-en-1-ol, has been studied at room temperature. Rate coefficients for reactions of the nitrate radical (NO3) with these stress-induced plant emissions were measured using the discharge-flow technique. We employed off-axis continuous-wave cavity-enhanced absorption spectroscopy (CEAS) for the detection of NO3, which enabled us to work in excess of the hexenol compounds over NO3. The rate coefficients determined were (2.93 +/- 0.58) x 10(-13) cm(3) molecule(-1) s(-1), (2.67 +/- 0.42) x 10(-13) cm(3) molecule(-1) s(-1), (4.43 +/- 0.91) x 10(-13) cm(3) molecule(-1) s(-1), (1.56 +/- 0.24) x 10(-13) cm(3) molecule(-1) s(-1), and (1.30 +/- 0.24) x 10(-13) cm(3) molecule(-1) s(-1) for (Z)-hex-4-en-1-ol, (Z)-hex-3en-1-ol, (E)-hex-3-en-1-ol, (Z)-hex-2-en-1-ol and (E)-hex-2-en-1-ol. The rate coefficient for the reaction of NO3 with (Z)-hex-3-en-1-ol agrees with the single published determination of the rate coefficient using a relative method. The other rate coefficients have not been measured before and are compared to estimated values. Relative-rate studies were also performed, but required modification of the standard technique because N2O5 (used as the source of NO3) itself reacts with the hexenols. We used varying excesses of NO2 to determine simultaneously rate coefficients for reactions of NO3 and N2O5 with (E)-hex-3-en-1-ol of (5.2 +/- 1.8) x 10(-13) cm(3) molecule(-1) s(-1) and (3.1 +/- 2.3) x 10(-18) cm(3) molecule(-1) s(-1). Our new determinations suggest atmospheric lifetimes with respect to NO3-initiated oxidation of roughly 1-4 h for the hexenols, comparable with lifetimes estimated for the atmospheric degradation by OH and shorter lifetimes than for attack by O-3. Recent measurements of [N2O5] suggest that the gas-phase reactions of N2O5 with unsaturated alcohols will not be of importance under usual atmospheric conditions, but they certainly can be in laboratory systems when determining rate coefficients.
Resumo:
The extracting agent 2,6-bis(4,6-di-pivaloylamino-1,3,5-triazin-2-yl)-pyridine (L-5) in n-octanol was found, in synergy with 2-bromodecanoic acid, to give D-Am/D-Eu separation factors (SFs) between 2.4 and 3.7 when used to extract the metal ions from 0.02-0.12 M HNO3. Slightly higher SFs (4-6) were obtained in the absence of the synergist when the ligand was used to extract Am(III) and Eu(III) from 0.98 M HNO3. In order to investigate the possible nature of the extracted species crystal structures of L-5 and the complex formed between Yb(III) with 2,6-bis(4,6-di-amino-1,3,5-triazin-2-yl)-pyridine (L-4) were also determined. The structure of L-5 shows 3 methanol solvent molecules all of which form 2 or 3 hydrogen bonds with triazine nitrogen atoms, amide nitrogen or oxygen atoms, or pyridine nitrogen atoms. However, L-5 is relatively unstable in metal complexation reactions and loses amide groups to form the parent tetramine L-4. The crystal structure of Yb(L-4)(NO3)(3) shows ytterbium in a 9-coordinate environment being bonded to three donor atoms of the ligand and three bidentate nitrate ions. The solvent extraction properties of L-4 and L-5 are far inferior to those found for the 2,6-bis-(1,2,4-triazin-3-yl)-pyridines (L-1) which have SF values of ca. 140 and theoretical calculations have been made to compare the electronic properties of the ligands. The electronic charge distribution in L-4 and L-5 is similar to that found in other terdentate ligands such as terpyridine which have equally poor extraction properties and suggests that the unique properties of L-1 evolve from the presence of two adjacent nitrogen atoms in the triazine rings.
Resumo:
Three new basal-apical, mu(2)-1,1-azide bridged complexes, [CuL1(N-3)](2) (1), [CuL2(N-3)](2) (2) and [CuL3(N-3)]2 (3) with very similar tridentate Schiff base blocking ligands [L-1=N-(3-aminopropyl) salicylaldimine, L-2=7-amino-4-methyl-5-azahept-3-en-2-one and L-3=8-amino-4-methyl-5-azaoct-3-en-2-one) have been synthesised and their molecular structures determined by X-ray crystallography. In complex 1, there is no inter-dimer H-bonding. However, complexes 2 and 3 form two different supramolecular structures in which the dinuclear entities are linked by strong H-bonds giving one-dimensional systems. Variable-temperature (300-2 K) magnetic susceptibility measurements and magnetization measurements at 2 K reveal that complexes 1 and 2 have antiferromagnetic coupling while 3 has ferromagnetic coupling which is also confirmed by EPR spectra at 4-300 K. Magnetostructural correlations have been made taking into consideration both the azido bridging ligands and the existence of intermolecular hydrogen bonds in complexes 2 and 3.
Resumo:
The transforming growth factorβ(TGFβ) superfamily plays an important role in the myocardial response to hypertrophy. We have investigated the protein expression of TGFβ1,β2andβ3in left ventricular tissue, and determined their subcellular distribution in myocytes by immunoblotting and immunocytochemistry during the development of left ventricular hypertrophy (LVH), using isoform specific antibodies to TGFβ1,β2andβ3. LVH was produced in rats by aortic constriction (AC) and LV tissue was obtained at days (d)0, 1, 3, 7, 14, 21 and 42 following operation. Compared with age matched sham-operated controls (SH), TGFβ1levels in LV tissue of AC rats increased significantly from d1–d14 (P<0.03) concomitant with the adaptive growth of LV tissue. In contrast, TGFβ3levels decreased in LV tissue of AC rats from d3 post-operation (significant from d14–d42,P<0.03). No significant difference in TGFβ2levels were observed from SH and AC rats after operation. Antibodies to TGFβ1stained intercalated disks, sarcolemmal membranes and cytoplasm, but not nuclei, of cardiomyocytes on LV sections from untreated and SH rats. However, a trans-localisation of TGFβ1to the nuclei of cardiomyocytes was observed in AC hearts. Antibodies to TGFβ3stained T tubules, cytoplasm and the nuclei of cardiomyocytes from untreated and SH rats. However, by d7 post-AC operation, TGFβ3expression was lost rapidly from nuclei of cardiomyocytes followed by a reduction in total TGFβ3immunofluorescence in myocytes. Antibodies to TGFβ2stained sarcolemmal membranes of cardiomyocytes from both SH and AC rats without significant difference between groups. Thus, the differential pattern of protein expression and subcellular distribution of TGFβ1,β2andβ3in myocytes during the development of LVH suggests that these molecules play different roles in the response of cardiomyocytes to LVH.
Resumo:
The reaction of 2-chloro-3-methyl-1,4-naphthoquinone (3) with the anion of ethyl cyanoacetate led to a mixture of two epimeric fused-ring cyclopropane compounds, characterised as exo- and endo-1-cyano-1 -ethoxycarbonyl-1a-methyl-1a,7a-dihydro-1H-cyclopropa[b]naphthalene-2,7-dione (8) and (9). Various hydrolysis products of these were prepared and an X-ray crystallographic analysis was carried out on one of them, 1-carbamoyl-1 -carboxy-1a-methyl-1a,7a-dihydro-1H-cyclopropa[b]-naphthalene-2,7-dione (17). The reaction of 2-methyl-1,4-naphthoquinone (1) with ethyl diazoacetate gave a fused pyrazoline derivative, 3-ethoxycarbonyl-4-hydroxy-9a-methyl-1,9a-dihydro-benz[f]indazol-9-one (22), while reaction of 2-methyl-3-nitro-1,4-naphthoquinone (5) with diazomethane led to a fused Δ2-isoxazoline N-oxide, 3a-methyl-3,3a-dihydroisoxazolo[3,4-b]naphthalene-4,9-dione 1-oxide (26).
Resumo:
Fourier transform IR spectra in the ν2 and ν3 regions between 800 and 1500 cm−1 have been measured of H16OF with a resolution of 0.007 cm−1 and of H18OF and DOF with a resolution of 0.040 cm−1. Ground state constants have been improved for H16OF and have been obtained for the first time for H18OF. Parameters of the v2 = 1 and v3 = 1 excited states have been determined from rovibrational analyses of ca. 1000 ν2/ν3 lines which were fitted with σ 0.36, 4.5, and 7.6 × 10−3 cm−1 for H16OF, H18OF, and D16OF, respectively. Band centers of ν2/ν3 are 1353.40466(5)/889.07974(6), 1350.3976(5)/862.2967(7), and 1002.0083(9)/891.0014(15) cm−1, respectively, for the three isotopic species. While ν2 and ν3 are sufficiently separated in HOF to be treated independently, a Coriolis resonance is evident in DOF, the interaction constant ξ23c = 0.19073(16) cm−1 being in agreement with the prediction from the harmonic force field.
Resumo:
G-protein-coupled receptors (GPCRs) represent the largest family of receptors involved in transmembrane signaling. Although these receptors were generally believed to be monomeric entities, accumulating evidence supports the presence of GPCRs in multimeric forms. Here, using immunoprecipitation as well as time-resolved fluorescence resonance energy transfer to assess protein-protein interactions in living cells, we unambiguously demonstrate the occurrence of dimerization of the human histamine H-1 receptor. We also show the presence of domain-swapped H-1 receptor dimers in which there is the reciprocal exchange of transmembrane domain TM domains 6 and 7 between the receptors present in the dimer. Mutation of aspartate(107) in transmembrane (TM) 3 or phenylalanine(432) in TM6 to alanine results in two radioligand-binding-deficient mutant H-1 receptors. Coexpression of H-1 D(107)A and H-1 F(432)A, however, results in a reconstituted radioligand binding site that exhibits a pharmacological profile that corresponds to the wildtype H-1 receptor. Interestingly, the H-1 receptor radioligands [H-3] mepyramine and [H-3]-(-)- trans-1-phenyl-3-N, N-dimethylamino-1,2,3,4-tetrahydronaphthalene show differential saturation binding values (B-max) for wild-type H-1 receptors but not for the radioligand binding site that is formed upon coexpression of H-1 D(107)A and H-1 F(432)A receptors, suggesting the presence of different H-1 receptor populations.
Resumo:
The photochemistry of 1,1-dimethyl- and 1,1,3,4-tetramethylstannacyclopent-3-ene (4a and 4b,respectively) has been studied in the gas phase and in hexane solution by steady-state and 193-nm laser flash photolysis methods. Photolysis of the two compounds results in the formation of 1,3-butadiene (from 4a) and 2,3-dimethyl-1,3-butadiene (from 4b) as the major products, suggesting that cycloreversion to yield dimethylstannylene (SnMe2) is the main photodecomposition pathway of these molecules. Indeed, the stannylene has been trapped as the Sn-H insertion product upon photolysis of 4a in hexane containing trimethylstannane. Flash photolysis of 4a in the gas phase affords a transient absorbing in the 450-520nm range that is assigned to SnMe2 by comparison of its spectrum and reactivity to those previously reported from other precursors. Flash photolysis of 4b in hexane solution affords results consistent with the initial formation of SnMe2 (lambda(max) approximate to 500 nm), which decays over similar to 10 mu s to form tetramethyldistannene (5b; lambda(max) approximate to 470 nm). The distannene decays over the next ca. 50 mu s to form at least two other longer-lived species, which are assigned to higher SnMe2 oligomers. Time-dependent DFT calculations support the spectral assignments for SnMe2 and Sn2Me4, and calculations examining the variation in bond dissociation energy with substituent (H, Me, and Ph) in disilenes, digermenes, and distannenes rule out the possibility that dimerization of SnMe2 proceeds reversibly. Addition of methanol leads to reversible reaction with SnMe2 to form a transient absorbing at lambda(max) approximate to 360 nm, which is assigned to the Lewis acid-base complex between SnMe2 and the alcohol.
Resumo:
UV irradiation of hitherto unknown 4,5-bis-benzol[b]thiophen-3-yl-[1,3]dithiol-2-one gave 3-(3-benzo[b]thienyl)-thieno[3,4-c]benzo[ e][1,2]dithine by loss of carbon monoxide and rearrangement, whereas 4,5-bis-(2-bromo-phenyl)-[1,3]dithiol-2-one gave a polymeric material containing S-S bridges. The Structures of both photoproducts were demonstrated on the basis of chemical behaviour and/or X-ray diffraction. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Two tridentate Schiff bases, HL1(6-amino-3-methyl-1-phenyl-4-azahex-2-en-1-one), and HL2 (6-atnino-3,6-dimethyl-1-phenyl-4-azahex-2-en-1-one) on reaction with Cu(II) perchlorate in the presence of triethyl amine yielded two new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2) (1) and [(CuL2)(3)(mu(3)-OH)](ClO4)(2) center dot 0.75H(2)O (2), whereas another tridentate ligand HL3 (7-amino-3-methyl-1-phenyl-4-azahept-2-en-1-one) underwent hydrolysis under the same reaction conditions to result in the formation of a mononuclear complex, [Cu(bn)(pn)ClO4] (3) [where bn = 1-benzoylacetonate and pn = 1,3-propanediamine]. All three complexes have been characterized by X-ray crystallography. For both 1 and 2 the cationic part is trinuclear with a [Cu3OH] core held by three carbonyl oxygen bridges between each pair of copper(II) atoms. The structure of 3 is a monomer with a chelating 1,3-propanediamine and a benzoyl acetone moiety. Magnetic measurements of I and 2 have been performed in the 2-300 K temperature range. The experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -J(S1S2 + S2S3 + S1S3), yielding as best fit parameters: J = -25.6 cm(-1), g = 2.21 for 1 and J = 11.2 cm(-1), g = 2.10 for 2. The EPR spectra at low temperature could be indicative of spin frustration in complex 1. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Background N-3 polyunsaturated fatty acids (PUFAs) from oily fish protect against death from cardiovascular disease. We aimed to assess the hypothesis that incorporation of n-3 and n-6 PUFAs into advanced atherosclerotic plaques increases and decreases plaque stability, respectively. Methods We did a randomised controlled trial of patients awaiting carotid endarterectomy. We randomly allocated patients control, sunflower oil (n-6), or fish-oil (n-3) capsules until surgery. Primary outcome was plaque morphology indicative of stability or instability, and outcome measures were concentrations of EPA, DHA, and linoleic acid in carotid plaques; plaque morphology; and presence of macrophages in plaques. Analysis was per protocol. Findings 188 patients were enrolled and randomised; 18 withdrew and eight were excluded. Duration of oil treatment was 7-189 days (median 42) and did not differ between groups. The proportions of EPA and DHA were higher in carotid plaque fractions in patients receiving fish oil compared with those receiving control (absolute difference 0.5 [95% CI 0.3-0.7], 0.4 [0.1-0.6], and 0.2 [0.1-0.4] g/100 g total fatty acids for EPA; and 0.3 [0.0-0.8], 0.4 [0.1-0.7], and 0.3 [0.1-0.6] g/100 g total fatty acids for DHA; in plaque phospholipids, cholesteryl esters, and triacylglycerols, respectively). Sunflower oil had little effect on the fatty acid composition of lipid fractions. Fewer plaques from patients being treated with fish oil had thin fibrous caps and signs of inflammation and more plaques had thick fibrous caps and no signs of inflammation, compared with plaques in patients in the control and sunflower oil groups (odds ratio 0.52 [95% CI 0.24-0.89] and 1.19 [1.02-1.57] vs control; 0.49 [0.23-0.90] and 1.16 [1.01-1.53] vs sunflower oil). The number of macrophages in plaques from patients receiving fish oil was lower than in the other two groups. Carotid plaque morphology and infiltration by macrophages did not differ between control and sunflower oil groups. Interpretation Atherosclerotic plaques readily incorporate n-3 PUFAs from fish-oil supplementation, inducing changes that can enhance stability of atherosclerotic plaques. By contrast, increased consumption of n-6 PUFAs does not affect carotid plaque fatty-acid composition or stability over the time course studied here. Stability of plaques could explain reductions in non-fatal and fatal cardiovascular events associated with increased n-3 PUFA intake.