16 resultados para 2-Naphthyloxycarbonyl chloride
Resumo:
Reaction of CuCl2 center dot 2H(2)O with the 1:1 condensate (L) of 2-(2-aminoethyl) pyridine and 1-methyl-2-imidazolecarboxaldehyde in methanol yields monomeric CuLCl2 center dot H2O (1). Recrystallisation of 1 from aqueous methanol medium containing excess of PF6- affords the 1D coordination polymer [CuLCl](n)(PF6)(n) (2). A chloride bridge results in the coordination polymer. A face-to-face interaction is observed between the imidazole rings in 2. The interaction influences the structure and magnetic properties of 2 markedly. The complex 2 is ferromagnetic with a J value of 1.79 +/- 0.01 cm (1). The imidazole fragments in 2 are coordinated to the metal. In mononuclear [HgL2 ''](ClO4)(2), where L '' is the 1:2 condensate of ethylenediamine and 1-methyl-2-imidazolecarboxaldehyde, the imidazolyl moieties are not under the direct influence of the metal. Here the imidazole-imidazole interaction is angular and more distant. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The trans-[Cu2L2Cl2] (1), and cis-[Cu2L2Cl2]·H2O (2) isomers of a diphenoxido bridged Cu2O2 core have been synthesized using a tridentate reduced Schiff base ligand 2-[(2-dimethylamino-ethylamino)-methyl]-phenol. The geometry around Cu(II) is intermediate between square pyramid and trigonal bipyramid (Addison parameter, tau = 0.463) in 1 but nearly square pyramidal (tau = 0.049) in 2. The chloride ions are coordinated to Cu(II) and are trans oriented in 1 but cis oriented in 2. Both isomers have been optimized using density functional theory (DFT) calculations and it is found that the trans isomer is 7.2 kcal mol(-1) more favorable than the cis isomer. However, the hydrogen bonding interaction of crystallized water molecule with chloride ions compensates for the energy difference and stabilizes the cis isomer. Both complexes have been converted to a very rare phenoxido-azido bridged trinuclear species, [Cu3L2(mu(1,1)-N-3)(2)(H2O)(2)(ClO4)(2)] (3) which has also been characterized structurally. All the complexes are antiferromagnetically coupled but the magnitude of the coupling constants are significantly different (J = -156.60, -652.31, and -31.54 cm(-1) for 1, 2, and 3 respectively). Density functional theory (DFT) calculations have also been performed to gain further insight into the qualitative theoretical interpretation on the overall magnetic behavior of the complexes.
Resumo:
Carbamoyl methyl pyrazole compound of palladium(II) chloride of the type [PdCl2L2] (where L = C5H7N2CH2CON(C4H9)(2), C5H7N2CH2CON((C4H9)-C-i)(2), C3H3N2CH2CON(C4H9)(2), or C3H3N2CH2CON((C4H9)-C-i)(2)) has been synthesized and characterized by IR and H-1 NMR spectroscopy. The structure of the compound [PdCl2{(C3H3N2CH2CONBu2}2)-Bu-i] has been determined by single crystal X-ray diffraction and shows that the ligands are bonded through the soft pyrazolyl nitrogen atom to the palladium(II) chloride in a trans disposition. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Three series of water-soluble cationic copolymers have been synthesised by free-radical copolymerisation of [2-(methacryloyloxy)ethyl]-trimethylammonium chloride (MADQUAT) with methyl acrylate (MA), butyl acrylate (BA) and butyl methacrylate (BMA). The interactions between these copolymers and porcine stomach mucin have been studied in aqueous solutions using dynamic light scattering, zeta-potential measurements, turbidimetric titration and transmission electron microscopy (TEM). It was demonstrated that mixing aqueous dispersions of mucin with solutions of the cationic copolymers results in significant changes in size distribution and zeta-potential of its particles. It was found that an increase in the content of hydrophobic groups in copolymers leads to more efficient adsorption of macromolecules on the surface of mucin particles, which evidences the importance of hydrophobic effects in mucoadhesion. The efficiency of mucoadhesive interactions was found to be significantly dependent on pH, which affects the surface charge and aggregation stability of mucin. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Reaction of 2-(2'-hydroxyphenylazo)phenol with [Rh(PPh3)(3)Cl] in refluxing benzene in presence of triethylamine afforded a red complex in which the ligand is coordinated to rhodium as a tridentate O,N,O-donor. However, similar reaction of [Rh(PPh3)(3)Cl] with 2-(2'carboxyphenylazo)-4-methylphenol yielded two complexes, viz. a blue one and a green one. In both the complexes the ligand is coordinated as C,N,O-donor. However, in the blue complex orthometallation takes place from the ortho-carbon atom, which bears -COOH group via decarboxylation and in green one orthometallation occurs from the other ortho-carbon. Structures of all the three complexes were determined by X-ray crystallography. In all the three complexes rhodium is sharing the equatorial plane with the tridentate ligand and a chloride, and the two triphenylphosphines are axially disposed. All of the complexes show intense MLCT transitions in the visible region. Cyclic voltammetry on these complexes shows a Rh(III)-Rh(IV) oxidation on the positive side of SCE and a reduction of the coordinated azophenolate ligand on the negative side. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Electrochemical and spectroelectrochemical techniques were employed to study in detail the formation and so far unreported spectroscopic properties of soluble electroactive molecular chains with nonbridged metal-metal backbones, namely, [{Ru-0(CO)(PrCN)(bpy)}(m)](n) (m = 0, -1) and [{Ru-0(CO)(bpy)Cl}(m)](n) (m = -1, -2; bpy = 2,2'-bipyridine). The precursors cis-(Cl)-[Ru-II(CO)(MeCN)(bpy)Cl-2] (in PrCN) and mer-[Ru-II(CO)(bpy)Cl-3](-) (in tetrahydrofuran (THF) and PrCN) undergo one-electron reductions to reactive radicals [Ru-II(CO)(MeCN)(bpy(center dot-))Cl-2](-) and [Ru-II(CO)(bpy(center dot-))Cl-3](2-), respectively. Both [bpy(center dot-)]-containing species readily electropolymerize on concomitant dissociation of two chloride ligands and consumption of a second electron. Along this path, mer-to-fac isomerization of the bpy-reduced trichlorido complex (supported by density functional theory calculations) and a concentration-dependent oligomerization process contribute to the complex reactivity pattern. In situ spectroelectrochemistry (IR, UV/vis a has revealed that the charged polymer [{Ru-0(CO)(bpy)Cl}(-)](n) is stable in THF, but in PrCN it converts readily to [Ru-0(CO)(PrCN)(bpy)](n). An excess of chloride ions retards this substitution at low temperatures. Both polymetallic chains are completely soluble in the electrolyte solution and can be reduced reversibly to the corresponding [bpy(center dot-)]-containing species.
Resumo:
Access to 7-allyl substituted norbornene derivatives for tandem olefin metathesis via cationic rearrangement of cyclopropylmethanol substituted norbornenes is shown to be structure dependent. In some cases products that arise from cationic rearrangement of a cyclopropylmethyl cation are furnished. Thionyl chloride is shown to be superior to silica for inducing the desired rearrangement. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Soymilks with sodium hexametaphosphate (SHMP) (0% to 1.2%) and calcium chloride (12.50, 18.75, and 25.00 mM Ca),were analyzed for total Ca, Ca ion concentration, pH, kinematic viscosity, particle diameter, and sediment after pasteurization. Higher added Ca led to significant (P <= 0.05) increases in Ca ion concentration and significant (P <= 0.05) decreases in pH. At certain levels of SHMP, higher concentrations of added Ca significantly increased (P <= 0.05) kinematic viscosity, particle diameter, and sediment. Increasing SHMP concentration reduced Ca ion concentration, particle diameter, and dry sediment content, but reduced kinematic viscosity of samples (P <= 0.05). Adding SHMP up to 0.7% influenced pH of soymilk in different ways, depending on the level of Ca addition. When the pH of Ca-fortified soymilk was adjusted to a higher level, ionic Ca decreased as pH increased. Ihere was a negative linear relationship between the logarithm of ionic Ca concentration and the adjusted pH of the soymilk. Ionic Ca appeared to be a good indicator of thermally induced sediment formation, with little sediment being produced if ionic Ca was maintained below 0.4 mM.
Resumo:
Water-soluble cationic copolymers and hydrogels were synthesized by radical copolymerization of [2-(methacryloyloxy)ethyl]trimetilylammonium chloride (MADQUAT) and 2-hydroxyethylacrylate (HEA). The kinetics of copolymerization has been studied and the reactivity ratios were determined. It was found that MADQUAT exhibits higher reactivity in copolymerization. The complexation between linear MADQUAT-HEA and linear poly(acrylic acid) (PAA) has been studied in aqueous solutions at different pH. It results in the formation of insoluble polyelectrolyte complexes, whose composition and stability to aggregate depends on MADQUAT content in copolymers and pH. The hydrogels were synthesized by three-dimensional radical copolymerization of MADQUAT and HEA in the presence of a crosslinker. The effects of the feed mixture composition on yield and swelling properties of the hydrogels were studied. The interactions of these hydrogels with linear PAA result in formation of gel-polyelectrolyte complexes and contraction of the samples. It was found that the contraction depends on copolymer composition, PAA molecular weight, and solution pH. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Reaction of the dinuclear complex [{Rh(CO)(2)}(2) (mu-Cl)(2)]with an alpha-diimine ligand, 1,2- bis[(2,6-diisopropylphenyl) imino] acenaphthene (iPr(2)Ph-bian), produces square-planar [RhCl(CO)(iPr(2)Ph-bian)]. For the first time, 2: 1 and 1: 1 alpha-diimine/dimer reactions yielded the same product. The rigidity of iPr(2)Ph-bian together with its flexible electronic properties and steric requirements of the 2,6-diisopropyl substituents on the benzene rings allow rapid closure of a chelate bond and replacement of a CO ligand instead of chloride. A resonance Raman study of [RhCl(CO)(iPr(2)Ph-bian)] has revealed a predominant Rh-to-bian charge transfer (MLCT) character of electronic transitions in the visible spectral region. The stabilisation of [RhCl(CO)(iPr(2)Ph-bian)] in lower oxidation states by the pi-acceptor iPr(2)Ph-bian ligand was investigated in situ by UV-VIS, IR and EPR spectroelectrochemistry at variable temperatures. The construction of the novel UV-VIS-NIR-IR low-temperature OTTLE cell used in these studies is described in the last part of the paper.
Resumo:
We use atomistic molecular dynamics simulations to probe the effects of added sodium chloride (NaCl) and sodium salicylate (NaSal) salts on the spherical-to-threadlike micelle shape transition in aqueous solutions of cetyltrimethylammonium chloride (CTAC) surfactants. Long threadlike micelles are found to be unstable and break into spherical micelles at low concentrations or NaCl, but remain stable for 20 ns above a threshold value of [NaCl] approximate to 3.0 M, which is about 2.5 times larger than the experimental salt concentration at which the transition between spherical and rodlike micelles occurs. The chloride counterions associate weakly oil the surface of the CTAC micelles with the degree of counterion dissociation decreasing slightly with increasing [NaCl] on spherical micelles, but dropping significantly on the threadlike micelles tit high [NaCl]. This effect indicates that the electrolyte ions drive the micellar shape transition by screening the electrostatic repulsions between the micellar headgroups, The aromatic salicylate counterions, on the other hand, penetrate inside the micelle with their hydrophilic groups staying in the surfactant headgroup region and the hydrophobic groups partially embedded into the hydrophobic core of the micelle. The strong association of the salicylate ions with the surfactant headgroups leads to dense packing of the surfactant molecules, which effectively reduces the surface area per surfactant, and increases intramicellar ordering of the surfactant headgroups, favoring the formation of long threadlike micelles. Simulation predictions of the geometric and electrostatic properties of the spherical and threadlike micelles are in good agreement with experiments.
Resumo:
The coordination behavior of pyridylmethylthioether type of organic moieties having N2S2 donor set [L-1=1,2-bis(2-pyridylmethylthio)ethane, L-2 = 1,3-bis(2-pyridylmethyl-thio)propane and L-3 = 1,4-bis(2-pyridylmethylthio)butane] with copper(II) chloride and copper(II) bromide have been studied in different chemical environments. Copper(II) chloride assisted C-S bond cleavage of the organic moieties leading to the formation of copper(II) picolinate derivatives, whereas, under similar experimental conditions, no C-S bond cleavage was observed in the reaction with copper(II) bromide. The resulted copper(II) complexes isolated from the different mediums have been characterized by spectroscopic and X-ray crystallographic tools.
Resumo:
The non-electrolyte dichloro(hydroxy-methoxy-di(2-pyridylmethane)copper(II), resulting from the reaction of di(2-pyridyl)ketone and copper(II) chloride in methanol solution, was isolated and characterized and its structure was determined by X-ray diffraction. The pyridyl nitrogens and the chloride anions virtually from a basal plane in which lies the copper atom, while the oxygen of the methoxy group is in an apical position at a distance of 2.497 (3)Å. The nitrogenous base adopts the boat conformation with the pyridyl rings forming a dihedral angle of 108.72 (14)°. The nearest interatomic copper distance of 3.940(3)Å precludes copper-copper interactions, while the proximity of copper to the out-of-plane chlorine atoms [3.109(3)Å] suggests weakly bound chloro-bridged dimers. Spectral changes indicate that protic molecules displace the methoxy group and water affords the corresponding 1,1-diol.
Resumo:
Metallation of ArBr (Ar = 2,6-diethylphenyl) with Li powder in diethyl ether, followed by addition of stannous chloride at low temperature does not give the expected oligomeric diarylstannane but an essentially quantitative yield of the novel tetrastannabutane [{SnAr2}3SnArBr]. Some reactions of the new species are reported.
Resumo:
Cyclic voltammetry and ultraviolet−visible/infrared (UV−vis/IR) spectroelectrochemistry were used to study the cathodic electrochemical behavior of the osmium complexes mer-[OsIII(CO) (bpy)Cl3] (bpy = 2,2′-bipyridine) and trans(Cl)-[OsII(CO) (PrCN)(bpy)Cl2] at variable temperature in different solvents (tetrahydrofuran (THF), butyronitrile (PrCN), acetonitrile (MeCN)) and electrolytes (Bu4NPF6, Bu4NCl). The precursors can be reduced to mer-[OsII(CO) (bpy•−)Cl3]2− and trans(Cl)-[OsII(CO)(PrCN) (bpy•−)Cl2]−, respectively, which react rapidly at room temperature, losing the chloride ligands and forming Os(0) species. mer-[OsIII(CO) (bpy)Cl3] is reduced in THF to give ultimately an Os−Os-bonded polymer, probably [Os0(CO) (THF)-(bpy)]n, whereas in PrCN the well-soluble, probably mononuclear [Os0(CO) (PrCN)(bpy)], species is formed. The same products were observed for the 2 electron reduction of trans(Cl)-[OsII(CO)(PrCN) (bpy)Cl2] in both solvents. In MeCN, similar to THF, the[Os0(CO) (MeCN)(bpy)]n polymer is produced. It is noteworthy that the bpy ligand in mononuclear [Os0(CO) (PrCN)(bpy)] is reduced to the corresponding radical anion at a significantly less negative potential than it is in polymeric [Os0(CO) (THF)(bpy)]n: ΔE1/2 = 0.67 V. Major differences also exist in the IR spectra of the Os(0) species: the polymer shows a broad ν(CO) band at much smaller wavenumbers compared to the soluble Os(0) monomer that exhibits a characteristic ν(Pr-CN) band below 2200 cm−1 in addition to the intense and narrow ν(CO) absorption band. For the first time, in this work the M0-bpy(M = Ru, Os) mono- and dicarbonyl species soluble in PrCN have been formulated as a mononuclear complex. Density functional theory (DFT) and time-dependent-DFT calculations confirm the Os(0) oxidation state and suggest that [Os0(CO)(PrCN)(bpy)] is a square planar moiety. The reversible bpy-based reduction of [Os0(CO) (PrCN)(bpy)] triggers catalytic reduction of CO2 to CO and HCOO−.