28 resultados para 106-115 cm
Resumo:
Bayesian inference has been used to determine rigorous estimates of hydroxyl radical concentrations () and air mass dilution rates (K) averaged following air masses between linked observations of nonmethane hydrocarbons (NMHCs) spanning the North Atlantic during the Intercontinental Transport and Chemical Transformation (ITCT)-Lagrangian-2K4 experiment. The Bayesian technique obtains a refined (posterior) distribution of a parameter given data related to the parameter through a model and prior beliefs about the parameter distribution. Here, the model describes hydrocarbon loss through OH reaction and mixing with a background concentration at rate K. The Lagrangian experiment provides direct observations of hydrocarbons at two time points, removing assumptions regarding composition or sources upstream of a single observation. The estimates are sharpened by using many hydrocarbons with different reactivities and accounting for their variability and measurement uncertainty. A novel technique is used to construct prior background distributions of many species, described by variation of a single parameter . This exploits the high correlation of species, related by the first principal component of many NMHC samples. The Bayesian method obtains posterior estimates of , K and following each air mass. Median values are typically between 0.5 and 2.0 × 106 molecules cm−3, but are elevated to between 2.5 and 3.5 × 106 molecules cm−3, in low-level pollution. A comparison of estimates from absolute NMHC concentrations and NMHC ratios assuming zero background (the “photochemical clock” method) shows similar distributions but reveals systematic high bias in the estimates from ratios. Estimates of K are ∼0.1 day−1 but show more sensitivity to the prior distribution assumed.
Resumo:
Pesticides are an important potential cause of biodiversity and pollinator decline. Little is known about the impacts of pesticides on wild pollinators in the field. Insect pollinators were sampled in an agricultural system in Italy with the aim of detecting the impacts of pesticide use. The insecticide fenitrothion was over 150 times greater in toxicity than other pesticides used in the area, so sampling was set up around its application. Species richness of wild bees, bumblebees and butterflies were sampled at three spatial scales to assess responses to pesticide application: (i) the ‘field’ scale along pesticide drift gradients; (ii) the ‘landscape’ scale sampling in different crops within the area and (iii) the ‘regional’ scale comparing two river basins with contrasting agricultural intensity. At the field scale, the interaction between the application regime of the insecticide and the point in the season was important for species richness. Wild bee species richness appeared to be unaffected by one insecticide application, but declined after two and three applications. At the landscape scale, the species richness of wild bees declined in vine fields where the insecticide was applied, but did not decline in maize or uncultivated fields. At the regional scale, lower bumblebee and butterfly species richness was found in the more intensively farmed basin with higher pesticide loads. Our results suggest that wild bees are an insect pollinator group at particular risk from pesticide use. Further investigation is needed on how the type, quantity and timing of pesticide application impacts pollinators.
Resumo:
The increase in CVD incidence following the menopause is associated with oestrogen loss. Dietary isoflavones are thought to be cardioprotective via their oestrogenic and oestrogen receptor-independent effects, but evidence to support this role is scarce. Individual variation in response to diet may be considerable and can obscure potential beneficial effects in a sample population; in particular, the response to isoflavone treatment may vary according to genotype and equol-production status. The effects of isoflavone supplementation (50hairspmg/d) on a range of established and novel biomarkers of CVD, including markers of lipid and glucose metabolism and inflammatory biomarkers, have been investigated in a placebo-controlled 2x8-week randomised cross-over study in 117 healthy post-menopausal women. Responsiveness to isoflavone supplementation according to (1) single nucleotide polymorphisms in a range of key CVD genes, including oestrogen receptor (ER) alpha and beta and (2) equol-production status has been examined. Isoflavones supplementation was found to have no effect on markers of lipids and glucose metabolism. Isoflavones improve C-reactive protein concentrations but do not affect other plasma inflammatory markers. There are no differences in response to isoflavones according to equol-production status. However, differences in HDL-cholesterol and vascular cell adhesion molecule 1 response to isoflavones v. placebo are evident with specific ER beta genotypes. In conclusion, isoflavones have beneficial effects on C-reactive protein, but not other cardiovascular risk markers. However, specific ER beta gene polymorphic subgroups may benefit from isoflavone supplementation.
Resumo:
During a 4-week run in October–November 2006, a pilot experiment was performed at the CERN Proton Synchrotron in preparation for the Cosmics Leaving OUtdoor Droplets (CLOUD) experiment, whose aim is to study the possible influence of cosmic rays on clouds. The purpose of the pilot experiment was firstly to carry out exploratory measurements of the effect of ionising particle radiation on aerosol formation from trace H2SO4 vapour and secondly to provide technical input for the CLOUD design. A total of 44 nucleation bursts were produced and recorded, with formation rates of particles above the 3 nm detection threshold of between 0.1 and 100 cm−3 s−1, and growth rates between 2 and 37 nm h−1. The corresponding H2SO4 concentrations were typically around 106 cm−3 or less. The experimentally-measured formation rates and H2SO4 concentrations are comparable to those found in the atmosphere, supporting the idea that sulphuric acid is involved in the nucleation of atmospheric aerosols. However, sulphuric acid alone is not able to explain the observed rapid growth rates, which suggests the presence of additional trace vapours in the aerosol chamber, whose identity is unknown. By analysing the charged fraction, a few of the aerosol bursts appear to have a contribution from ion-induced nucleation and ion-ion recombination to form neutral clusters. Some indications were also found for the accelerator beam timing and intensity to influence the aerosol particle formation rate at the highest experimental SO2 concentrations of 6 ppb, although none was found at lower concentrations. Overall, the exploratory measurements provide suggestive evidence for ion-induced nucleation or ion-ion recombination as sources of aerosol particles. However in order to quantify the conditions under which ion processes become significant, improvements are needed in controlling the experimental variables and in the reproducibility of the experiments. Finally, concerning technical aspects, the most important lessons for the CLOUD design include the stringent requirement of internal cleanliness of the aerosol chamber, as well as maintenance of extremely stable temperatures (variations below 0.1 _C).
Resumo:
It is now possible to calculate the nine-dimensional rovibrational wavefunctions of sequentially bonded four-atom molecules variationally without dynamical approximation. In the case of HCCH, the simplest such molecule, many hundreds of rovibrational (J = 0, 1, 2) levels can be converged to better than 1.5 cm −1. Variational calculations of this kind are used here systematically to refine the well-known quartic valence-coordinate forcefleld of Strey and Mills [J.Mol. Spectrosc.59, 103-115 (1976)] against experimental term values up to three C-H stretch quanta for the principal and two deuterated isotopomers, yielding a new surface that reproduces the energies of all the known Σ, Π, and Δ states of these species up to the energy of two C-H stretch quanta with an rms error of 3 cm−1 . The refined forcefield is used to study the resonances associated with the accidental degeneracies (ν2 + ν4 + ν5, ν3) and (ν2 + 2ν5, ν1) in the principal isotopomer, leading to a clarification of the assignment of she experimentally detected states in the 2ν3 and 3ν3, polyads, and to the finding that vibrational Coriolis (kinetic energy) terms, rather than quartic anharmonicities in the potential, are the primary cause of the resonant interactions. Using a new cubic ab initio electric dipole field to calculate IR absorption coefficients, 24 undetected Σ and Π states of 1H12C12C1H and 5 undetected Σ states of D12C12CD are identified as candidates for experimental study, and their calculated energies and assignments are given.
Resumo:
Variation calculations of the vibration–rotation energy levels of many isotopomers of HCN are reported, for J=0, 1, and 2, extending up to approximately 8 quanta of each of the stretching vibrations and 14 quanta of the bending mode. The force field, which is represented as a polynomial expansion in Morse coordinates for the bond stretches and even powers of the angle bend, has been refined by least squares to fit simultaneously all observed data on the Σ and Π state vibrational energies, and the Σ state rotational constants, for both HCN and DCN. The observed vibrational energies are fitted to roughly ±0.5 cm−1, and the rotational constants to roughly ±0.0001 cm−1. The force field has been used to predict the vibration rotation spectra of many isotopomers of HCN up to 25 000 cm−1. The results are consistent with the axis‐switching assignments of some weak overtone bands reported recently by Jonas, Yang, and Wodtke, and they also fit and provide the assignment for recent observations by Romanini and Lehmann of very weak absorption bands above 20 000 cm−1.
Resumo:
High-resolution vibration-rotation spectra of monofluoroacetylene are reported for many bands in the region 1700 to 7500 cm−1. The spectra were observed on Nicolet 7199 and Bruker IFS 120 Fourier spectrometers, with resolutions of about 0.06 and 0.003 cm−1, respectively. About 130 bands have been observed in this region, of which about 80 have been rotationally analyzed. The assignment of vibrational labels to the higher energy levels is complicated by the effects of strong Fermi resonances, and many weak localized rotational resonances are observed.
Resumo:
In part I of this study [Baggott, Clase, and Mills, Spectrochim. Acta Part A 42, 319 (1986)] we presented FTIR spectra of gas phase cyclobutene and modeled the v=1–3 stretching states of both olefinic and methylenic C–H bonds in terms of a local mode model. In this paper we present some improvements to our original model and make use of recently derived ‘‘x,K relations’’ to find the equivalent normal mode descriptions. The use of both the local mode and normal mode approaches to modeling the vibrational structure is described in some detail. We present evidence for Fermi resonance interactions between the methylenic C–H stretch overtones and ring C–C stretch vibrations, revealed in laser photoacoustic spectra in the v=4–6 region. An approximate model vibrational Hamiltonian is proposed to explain the observed structure and is used to calculate the dynamics of the C–H stretch local mode decay resulting from interaction with lower frequency ring modes. The implications of our experimental and theoretical studies for mode‐selective photochemistry are discussed briefly.
Resumo:
The infrared spectrum of carbon suboxide has been recorded from 1800 to 2600 cm−1 at a resolution of 0.003 cm−1. About 7% of the ca. 40 000 lines observed have been assigned and analyzed, belonging to 36 different bands. Most of these are associated with the fundamental ν3, at 2289.80 cm−1, and the combination band ν2 + ν4, at 2386.61 cm−1, each of which give rise to a system of sum bands, difference bands, and hot bands involving the low-wave-number fundamental ν7 at 18 cm−1. A few other tentative assignments are made. The bands have been analyzed for vibrational and rotational constants.
Resumo:
The a/b hybrid-type ν1 fundamental and 2ν2 overtone bands of HOF were investigated by FTIR spectroscopy with a resolution close to 0.008 cm−1. Improved ground state parameters of HOF were determined from a merge of more than 3000 ground state combination differences formed from ν1 and previously measured ν2 transitions with the reported pure rotational lines. Excited state parameters of the v2 = 2 state, ν0 = 2686.924 6(1) and χ22 = −9.942 4(1) cm−1, were determined employing Watson's A-reduced Hamiltonian up to sixth order in I′ representation. The 2ν2 state was found to be unperturbed, the excited state parameters being closely related to those of ν2.
Resumo:
The vibrational energy levels of diazocarbene (diazomethylene) in its electronic ground state, (X) over tilde (3) Sigma(-) CNN, have been predicted using the variational method. The potential energy surfaces of (X) over tilde (3) A" CNN were determined by employing ab initio single reference coupled cluster with single and double excitations (CCSD), CCSD with perturbative triple excitations [CCSD(T)], multi-reference complete active space self-consistent-field (CASSCF), and internally contracted multi-reference configuration interaction (ICMRCI) methods. The correlation-consistent polarised valence quadruple zeta (cc-pVQZ) basis set was used. Four sets of vibrational energy levels determined from the four distinct analytical potential functions have been compared with the experimental values from the laser-induced fluorescence measurements of Wurfel et al. obtained in 1992. The CCSD, CCSD(T), and CASSCF potentials have not provided satisfactory agreement with the experimental observations. In this light, the importance of both non-dynamic (static) and dynamic correlation effects in describing the ground state of CNN is emphasised. Our best theoretical fundamental frequencies at the cc-pVQZ ICMRCI level of theory, v(1) = 1230, v(2) = 394, and v(3) = 1420 cm(-1) are in excellent agreement with the experimental values of v(1) = 1235, v(2) = 396, and v(3) = 1419cm(-1) and the mean absolute deviation between the 23 calculated and experimental vibrational energy levels is only 7.4 cm(-1). It is shown that the previously suggested observation of the v(3) frequency at about 2847cm(-1) was in fact the first overtone 2v(3).
Resumo:
We present argon predissociation vibrational spectra of the OH-.H2O and Cl-.H2O complexes in the 1000-1900 cm(-1) energy range, far below the OH stretching region reported in previous studies. This extension allows us to explore the fundamental transitions of the intramolecular bending vibrations associated with the water molecule, as well as that of the shared proton inferred from previous assignments of overtones in the higher energy region. Although the water bending fundamental in the Cl-.H2O spectrum is in very good agreement with expectations, the OH-.H2O spectrum is quite different than anticipated, being dominated by a strong feature at 1090 cm(-1). New full-diniensionality calculations of the OH-.H2O vibrational level structure using diffusion Monte Carlo and the VSCF/CI methods indicate this band arises from excitation of the shared proton.
Resumo:
UV absorption spectra of five methyl-substituted hydroxy-cyclohexadienyl radicals, formed by the addition of the hydroxyl radical (OH) to toluene (methyl benzene), o-, m- and p-xylene (1,2-, 1,3- and 1,4-dimethyl benzene, respectively) and mesitylene (1,3,5-trimethylbenzene), have been determined at 298 K, 1 atm pressure (N-2 + O-2), and the corresponding absolute absorption cross-sections measured, using laser flash photolysis and time-resolved UV absorption detection. As observed for other cyclohexadienyl-type radicals, a strong absorption band is present in the 260-340 nm spectral region, with maximum cross-sections in the range (0.9-2.2) x 10(-17) cm(2) molecule(-1). The shape of the band varies significantly from one radical to the next for the series of aromatic precursors investigated. The nature and yields of hydroxylated ring-retaining oxidation products, identified in previous studies of the OH-initiated oxidation of aromatic hydrocarbons, and the results of theoretical density functional theory (DFT) calculations indicate that one or more possible isomers of the various OH-adducts may contribute to the observed spectra. Isomers where the OH-group is ortho- (or both ortho- and ipso-) to a substituent methyl-group are likely to be the most abundant but other isomers may also be formed to a significant extent. Nonetheless, the present study provides absorption spectra of the adduct radicals formed from the gas phase addition of OH to the aromatic hydrocarbons considered, near room temperature and I atm pressure. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Two polymeric azido bridged complexes [Ni2L2(N-3)(3)](n)(ClO4). (1) and [Cu(bpdS)(2)(N-3)],(ClO4),(H2O)(2.5n) (2) [L = Schiff base, obtained from the condensation of pyridine-2-aldehyde with N,N,2,2-tetramethyl-1,3-propanediamine; bpds = 4,4'-bipyridyl disulfide] have been synthesized and their crystal structures have been determined. Complex 1, C26H42ClN15Ni2O4, crystallizes in a triclinic system, space group P1 with a 8.089(13), b = 9.392(14), c = 12.267(18) angstrom, a = 107.28(l), b 95.95(1), gamma = 96.92(1)degrees and Z = 2; complex 2, C20H21ClCuN7O6.5S4, crystallizes in an orthorhombic system, space group Pnna with a = 10.839(14), b = 13.208(17), c = 19.75(2) angstrom and Z = 4. The crystal structure of I consists of 1D polymers of nickel(L) units, alternatively connected by single and double bridging mu-(1,3-N-3) ligand with isolated perchlorate anions. Variable temperature magnetic susceptibility data of the complex have been measured and the fitting,of magnetic data was carried out applying the Borris-Almenar formula for such types of alternating one-dimensional S = 1 systems, based on the Hamiltonian H = -J Sigma(S2iS2i-1 + aS(2i)S(2i+1)). The best-fit parameters obtained are J = -106.7 +/- 2 cm(-1); a = 0.82 +/- 0.02; g = 2.21 +/- 0.02. Complex 2 is a 2D network of 4,4 topology with the nodes occupied by the Cu-II ions, and the edges formed by single azide and double bpds connectors. The perchlorate anions are located between pairs of bpds. The magnetic data have been fitted considering the complex as a pseudo-one-dimensional system, with all copper((II)) atoms linked by [mu(1,3-azido) bridging ligands at axial positions (long Cu...N-3 distances) since the coupling through long bpds is almost nil. The best-fit parameters obtained with this model are J = -1.21 +/- 0.2 cm(-1), g 2.14 +/- 0.02. (c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005).