54 resultados para 080109 Pattern Recognition and Data Mining


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge-elicitation is a common technique used to produce rules about the operation of a plant from the knowledge that is available from human expertise. Similarly, data-mining is becoming a popular technique to extract rules from the data available from the operation of a plant. In the work reported here knowledge was required to enable the supervisory control of an aluminium hot strip mill by the determination of mill set-points. A method was developed to fuse knowledge-elicitation and data-mining to incorporate the best aspects of each technique, whilst avoiding known problems. Utilisation of the knowledge was through an expert system, which determined schedules of set-points and provided information to human operators. The results show that the method proposed in this paper was effective in producing rules for the on-line control of a complex industrial process. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge-elicitation is a common technique used to produce rules about the operation of a plant from the knowledge that is available from human expertise. Similarly, data-mining is becoming a popular technique to extract rules from the data available from the operation of a plant. In the work reported here knowledge was required to enable the supervisory control of an aluminium hot strip mill by the determination of mill set-points. A method was developed to fuse knowledge-elicitation and data-mining to incorporate the best aspects of each technique, whilst avoiding known problems. Utilisation of the knowledge was through an expert system, which determined schedules of set-points and provided information to human operators. The results show that the method proposed in this paper was effective in producing rules for the on-line control of a complex industrial process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is a report on the data-mining of two chess databases, the objective being to compare their sub-7-man content with perfect play as documented in Nalimov endgame tables. Van der Heijden’s ENDGAME STUDY DATABASE IV is a definitive collection of 76,132 studies in which White should have an essentially unique route to the stipulated goal. Chessbase’s BIG DATABASE 2010 holds some 4.5 million games. Insight gained into both database content and data-mining has led to some delightful surprises and created a further agenda.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

n the past decade, the analysis of data has faced the challenge of dealing with very large and complex datasets and the real-time generation of data. Technologies to store and access these complex and large datasets are in place. However, robust and scalable analysis technologies are needed to extract meaningful information from these datasets. The research field of Information Visualization and Visual Data Analytics addresses this need. Information visualization and data mining are often used complementary to each other. Their common goal is the extraction of meaningful information from complex and possibly large data. However, though data mining focuses on the usage of silicon hardware, visualization techniques also aim to access the powerful image-processing capabilities of the human brain. This article highlights the research on data visualization and visual analytics techniques. Furthermore, we highlight existing visual analytics techniques, systems, and applications including a perspective on the field from the chemical process industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the recent years, the area of data mining has been experiencing considerable demand for technologies that extract knowledge from large and complex data sources. There has been substantial commercial interest as well as active research in the area that aim to develop new and improved approaches for extracting information, relationships, and patterns from large datasets. Artificial neural networks (NNs) are popular biologically-inspired intelligent methodologies, whose classification, prediction, and pattern recognition capabilities have been utilized successfully in many areas, including science, engineering, medicine, business, banking, telecommunication, and many other fields. This paper highlights from a data mining perspective the implementation of NN, using supervised and unsupervised learning, for pattern recognition, classification, prediction, and cluster analysis, and focuses the discussion on their usage in bioinformatics and financial data analysis tasks. © 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pocket Data Mining (PDM) describes the full process of analysing data streams in mobile ad hoc distributed environments. Advances in mobile devices like smart phones and tablet computers have made it possible for a wide range of applications to run in such an environment. In this paper, we propose the adoption of data stream classification techniques for PDM. Evident by a thorough experimental study, it has been proved that running heterogeneous/different, or homogeneous/similar data stream classification techniques over vertically partitioned data (data partitioned according to the feature space) results in comparable performance to batch and centralised learning techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The P-found protein folding and unfolding simulation repository is designed to allow scientists to perform data mining and other analyses across large, distributed simulation data sets. There are two storage components in P-found: a primary repository of simulation data that is used to populate the second component, and a data warehouse that contains important molecular properties. These properties may be used for data mining studies. Here we demonstrate how grid technologies can support multiple, distributed P-found installations. In particular, we look at two aspects: firstly, how grid data management technologies can be used to access the distributed data warehouses; and secondly, how the grid can be used to transfer analysis programs to the primary repositories — this is an important and challenging aspect of P-found, due to the large data volumes involved and the desire of scientists to maintain control of their own data. The grid technologies we are developing with the P-found system will allow new large data sets of protein folding simulations to be accessed and analysed in novel ways, with significant potential for enabling scientific discovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in hardware and software technology enable us to collect, store and distribute large quantities of data on a very large scale. Automatically discovering and extracting hidden knowledge in the form of patterns from these large data volumes is known as data mining. Data mining technology is not only a part of business intelligence, but is also used in many other application areas such as research, marketing and financial analytics. For example medical scientists can use patterns extracted from historic patient data in order to determine if a new patient is likely to respond positively to a particular treatment or not; marketing analysts can use extracted patterns from customer data for future advertisement campaigns; finance experts have an interest in patterns that forecast the development of certain stock market shares for investment recommendations. However, extracting knowledge in the form of patterns from massive data volumes imposes a number of computational challenges in terms of processing time, memory, bandwidth and power consumption. These challenges have led to the development of parallel and distributed data analysis approaches and the utilisation of Grid and Cloud computing. This chapter gives an overview of parallel and distributed computing approaches and how they can be used to scale up data mining to large datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Guest Editorial

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a general Multi-Agent System framework for distributed data mining based on a Peer-to-Peer model. Agent protocols are implemented through message-based asynchronous communication. The framework adopts a dynamic load balancing policy that is particularly suitable for irregular search algorithms. A modular design allows a separation of the general-purpose system protocols and software components from the specific data mining algorithm. The experimental evaluation has been carried out on a parallel frequent subgraph mining algorithm, which has shown good scalability performances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pattern-recognition receptors (PRRs) detect molecular signatures of microbes and initiate immune responses to infection. Prototypical PRRs such as Toll-like receptors (TLRs) signal via a conserved pathway to induce innate response genes. In contrast, the signaling pathways engaged by other classes of putative PRRs remain ill defined. Here, we demonstrate that the β-glucan receptor Dectin-1, a yeast binding C type lectin known to synergize with TLR2 to induce TNFα and IL-12, can also promote synthesis of IL-2 and IL-10 through phosphorylation of the membrane proximal tyrosine in the cytoplasmic domain and recruitment of Syk kinase. syk−/− dendritic cells (DCs) do not make IL-10 or IL-2 upon yeast stimulation but produce IL-12, indicating that the Dectin-1/Syk and Dectin-1/TLR2 pathways can operate independently. These results identify a novel signaling pathway involved in pattern recognition by C type lectins and suggest a potential role for Syk kinase in regulation of innate immunity.