2 resultados para latitude


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable hydrogen isotopes (δD) in flight feathers were measured to investigate the summer origins of five species of boreal-breeding warblers captured during fall migration at Canadian Migration Monitoring Network (CMMN) stations spread across southern Canada. Mean δD varied among stations and species within stations, but there was broad overlap in δD values. Although isotope ratios indicate that migrants at each station come from a wide range of latitudes, they are unable to provide much longitudinal discrimination. Band recoveries are sparse, but indicate that in general western Canadian warblers move southeast in fall, eastern birds move southwest, and there is a transition zone in the Great Lakes region. Combining knowledge of migratory direction with isotope results increases discrimination of breeding areas. Isotope results support fall migratory movements by Blackpoll Warbler (Dendroica striata) and Northern Waterthrush (Seiurus novaboracensis) that are more easterly than for other species, and in all study species, birds from more northern regions passed through southern Canada later in the season. Migration monitoring stations capture birds from broad areas of latitude, and migrants passing through each province appear to come from largely different portions of the Canadian breeding range, so a few stations placed in each province should suffice collectively to sample birds from most of the boreal forest. Migration monitoring in southern Canada, therefore, has the potential to monitor status of boreal forest birds in Canada that are unsampled by other monitoring programs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Canadian Migration Monitoring Network (CMMN) consists of standardized observation and migration count stations located largely along Canada’s southern border. A major purpose of CMMN is to detect population trends of migratory passerines that breed primarily in the boreal forest and are otherwise poorly monitored by the North American Breeding Bird Survey (BBS). A primary limitation of this approach to monitoring is that it is currently not clear which geographic regions of the boreal forest are represented by the trends generated for each bird species at each station or group of stations. Such information on “catchment areas” for CMMN will greatly enhance their value in contributing to understanding causes of population trends, as well as facilitating joint trend analysis for stations with similar catchments. It is now well established that naturally occurring concentrations of deuterium in feathers grown in North America can provide information on their approximate geographic origins, especially latitude. We used stable hydrogen isotope analyses of feathers (δ²Hf) from 15 species intercepted at 22 CMMN stations to assign approximate origins to populations moving through stations or groups of stations. We further constrained the potential catchment areas using prior information on potential longitudinal origins based upon bird migration trajectories predicted from band recovery data and known breeding distributions. We detected several cases of differences in catchment area of species passing through sites, and between seasons within species. We discuss the importance of our findings, and future directions for using this approach to assist conservation of migratory birds at continental scales.