4 resultados para coastal current


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an imminent need for conservation and best-practice management efforts in marine ecosystems where global-scale declines in the biodiversity and biomass of large vertebrate predators are increasing and marine communities are being altered. We examine two marine-based industries that incidentally take migratory birds in Canada: (1) commercial fisheries, through bycatch, and (2) offshore oil and gas exploration, development, and production. We summarize information from the scientific literature and technical reports and also present new information from recently analyzed data to assess the magnitude and scope of mortality. Fisheries bycatch was responsible for the highest levels of incidental take of migratory bird species; estimated combined take in the longline, gillnet, and bottom otter trawl fisheries within the Atlantic, including the Gulf of St. Lawrence, and Pacific regions was 2679 to 45,586 birds per year. For the offshore oil and gas sector, mortality estimates ranged from 188 to 4494 deaths per year due to the discharge of produced waters resulting in oil sheens and collisions with platforms and vessels; however these estimates for the oil and gas sector are based on many untested assumptions. In spite of the uncertainties, we feel levels of mortality from these two industries are unlikely to affect the marine bird community in Canada, but some effects on local populations from bycatch are likely. Further research and monitoring will be required to: (1) better estimate fisheries-related mortality for vulnerable species and populations that may be impacted by local fisheries, (2) determine the effects of oil sheens from produced waters, and attraction to platforms and associated mortality from collisions, sheens, and flaring, so that better estimates of mortality from the offshore oil and gas sector can be obtained, and (3) determine impacts associated with accidental spills, which are not included in our current assessment. With a better understanding of the direct mortality of marine birds from industry, appropriate mitigation and management actions can be implemented. Cooperation from industry for data collection, research to fill knowledge gaps, and implementation of mitigation approaches will all be needed to conserve marine birds in Canada.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Birds are vulnerable to collisions with human-made fixed structures. Despite ongoing development and increases in infrastructure, we have few estimates of the magnitude of collision mortality. We reviewed the existing literature on avian mortality associated with transmission lines and derived an initial estimate for Canada. Estimating mortality from collisions with power lines is challenging due to the lack of studies, especially from sites within Canada, and due to uncertainty about the magnitude of detection biases. Detection of bird collisions with transmission lines varies due to habitat type, species size, and scavenging rates. In addition, birds can be crippled by the impact and subsequently die, although crippling rates are poorly known and rarely incorporated into estimates. We used existing data to derive a range of estimates of avian mortality associated with collisions with transmission lines in Canada by incorporating detection, scavenging, and crippling biases. There are 231,966 km of transmission lines across Canada, mostly in the boreal forest. Mortality estimates ranged from 1 million to 229.5 million birds per year, depending on the bias corrections applied. We consider our most realistic estimate, taking into account variation in risk across Canada, to range from 2.5 million to 25.6 million birds killed per year. Data from multiple studies across Canada and the northern U.S. indicate that the most vulnerable bird groups are (1) waterfowl, (2) grebes, (3) shorebirds, and (4) cranes, which is consistent with other studies. Populations of several groups that are vulnerable to collisions are increasing across Canada (e.g., waterfowl, raptors), which suggests that collision mortality, at current levels, is not limiting population growth. However, there may be impacts on other declining species, such as shorebirds and some species at risk, including Alberta’s Trumpeter Swans (Cygnus buccinator) and western Canada’s endangered Whooping Cranes (Grus americana). Collisions may be more common during migration, which underscores the need to understand impacts across the annual cycle. We emphasize that these estimates are preliminary, especially considering the absence of Canadian studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increase in coastal storm frequency and intensity expected under most climate change scenarios is likely to substantially modify beach configuration and associated habitats. This study aimed to analyze the impact of coastal storms on a nesting population of the endangered Piping Plover (Charadrius melodus melodus) in southeastern New Brunswick, Canada. Previous studies have shown that numbers of nesting Piping Plovers may increase following storms that create new nesting habitat at individual beaches. However, to our knowledge, no test of this pattern has been conducted over a regional scale. We hypothesized that Piping Plover abundance would increase after large coastal storms occurring during the nonbreeding season. However, we expected a delay in the colonization of newly created habitat owing to low-density populations, combined with high site fidelity of adults and high variability in survival rate of subadults. We tested this hypothesis using a 27-year (1986-2012) data set of Piping Plover abundance and productivity (nesting pairs and fledged young) collected at five sites in eastern New Brunswick. We identified 11 major storms that could potentially have modified Piping Plover habitat over the study period. The number of fledged young increased three years after a major storm, but the relationship was much weaker for the number of nesting pairs. These findings are consistent with the hypothesized increase in suitable habitat after coastal storms. Including storm occurrence with other factors influencing habitat quality will enhance Piping Plover conservation strategies.