3 resultados para Tree Breeding Strategies
Resumo:
Forestry and other activities are increasing in the boreal mixedwood of Alberta, with a concomitant decrease in older forest. The Barred Owl (Strix varia) is an old-growth indicator species in some jurisdictions in North America. Hence, we radio-tagged Barred Owls in boreal mixedwood in Alberta to determine whether harvesting influenced habitat selection. We used three spatial scales: nest sites, i.e., nest tree and adjacent area of 11.7 m radius around nests, nesting territory of 1000 m radius around nests, and home range locations within 2000 m radius of the home range center. Barred Owls nested primarily in balsam poplar (Populus balsamifera) snags > 34 cm dbh and nest trees were surrounded by large, > 34 cm dbh, balsam poplar trees and snags. Nesting territories contained a variety of habitats including young < 80-yr-old, deciduous-dominated stands, old deciduous and coniferous-dominated stands, treed bogs, and recent clear-cuts. However, when compared to available habitat in the study area, they were more likely to contain old conifer-dominated stands and recent cutblocks. We assumed this is because all of the recent harvest occurred in old stands, habitat preferred by the owls. When compared with random sites, locations used for foraging and roosting at the home range scale were more likely to be in young deciduous-dominated stands, old conifer-dominated stands and cutblocks > 30 yr old, and less likely to occur in old deciduous-dominated stands and recent cutblocks. Hence, although recent clearcuts occurred in territories, birds avoided these microhabitats during foraging. To meet the breeding requirements of Barred Owls in managed forests, 10–20 ha patches of old deciduous and mixedwood forest containing large Populus snags or trees should be maintained. In our study area, nest trees had a minimum dbh of 34 cm. Although cut areas were incorporated into home ranges, the amount logged was low, i.e., 7%, in our area. Hence more research is required to determine harvest levels tolerated by owls over the long term.
Resumo:
Detailed knowledge of waterfowl abundance and distribution across Canada is lacking, which limits our ability to effectively conserve and manage their populations. We used 15 years of data from an aerial transect survey to model the abundance of 17 species or species groups of ducks within southern and boreal Canada. We included 78 climatic, hydrological, and landscape variables in Boosted Regression Tree models, allowing flexible response curves and multiway interactions among variables. We assessed predictive performance of the models using four metrics and calculated uncertainty as the coefficient of variation of predictions across 20 replicate models. Maps of predicted relative abundance were generated from resulting models, and they largely match spatial patterns evident in the transect data. We observed two main distribution patterns: a concentrated prairie-parkland distribution and a more dispersed pan-Canadian distribution. These patterns were congruent with the relative importance of predictor variables and model evaluation statistics among the two groups of distributions. Most species had a hydrological variable as the most important predictor, although the specific hydrological variable differed somewhat among species. In some cases, important variables had clear ecological interpretations, but in some instances, e.g., topographic roughness, they may simply reflect chance correlations between species distributions and environmental variables identified by the model-building process. Given the performance of our models, we suggest that the resulting prediction maps can be used in future research and to guide conservation activities, particularly within the bounds of the survey area.