2 resultados para Summer theater.
Resumo:
Stable hydrogen isotopes (δD) in flight feathers were measured to investigate the summer origins of five species of boreal-breeding warblers captured during fall migration at Canadian Migration Monitoring Network (CMMN) stations spread across southern Canada. Mean δD varied among stations and species within stations, but there was broad overlap in δD values. Although isotope ratios indicate that migrants at each station come from a wide range of latitudes, they are unable to provide much longitudinal discrimination. Band recoveries are sparse, but indicate that in general western Canadian warblers move southeast in fall, eastern birds move southwest, and there is a transition zone in the Great Lakes region. Combining knowledge of migratory direction with isotope results increases discrimination of breeding areas. Isotope results support fall migratory movements by Blackpoll Warbler (Dendroica striata) and Northern Waterthrush (Seiurus novaboracensis) that are more easterly than for other species, and in all study species, birds from more northern regions passed through southern Canada later in the season. Migration monitoring stations capture birds from broad areas of latitude, and migrants passing through each province appear to come from largely different portions of the Canadian breeding range, so a few stations placed in each province should suffice collectively to sample birds from most of the boreal forest. Migration monitoring in southern Canada, therefore, has the potential to monitor status of boreal forest birds in Canada that are unsampled by other monitoring programs.
Resumo:
Understanding the relative influence of environmental variables, especially climate, in driving variation in species diversity is becoming increasingly important for the conservation of biodiversity. The objective of this study was to determine to what extent climate can explain the structure and diversity of forest bird communities by sampling bird abundance in homogenous mature spruce stands in the boreal forest of the Québec-Labrador peninsula using variance partitioning techniques. We also quantified the relationship among two climatic gradients, summer temperature and precipitation, and bird species richness, migratory strategy, and spring arrival phenology. For the bird community, climate factors appear to be most important in explaining species distribution and abundance because nearly 15% of the variation in the distribution of the 44 breeding birds selected for the analysis can be explained by climate. The vegetation variables we selected were responsible for a much smaller amount of the explained variation (4%). Breeding season temperature seems to be more important than precipitation in driving variation in bird species diversity at the scale of our analysis. Partial correlation analysis indicated that bird species richness distribution was determined by the temperature gradient, because the number of species increased with increasing breeding season temperature. Similar results were observed between breeding season temperature and the number of residents, short-distance and long-distance migrants, and early and late spring migrants. Our results suggest that the northern and southern range boundaries of species are not equally sensitive to the temperature gradient across the region.