2 resultados para Rotational motion of artificial satellites


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grasslands are often grazed by cattle and many grassland birds nest on the ground, potentially exposing nests to trampling. We tested for trampling risk introduced by cattle to nests of endangered Florida Grasshopper Sparrows (Ammodramus savannarum floridanus) using experimentally paired grids of artificial nests (i.e., clay targets) similar in size to nests of Florida Grasshopper Sparrows and counted the number of clay targets that were broken in paired grazed and ungrazed enclosures. Clay targets in grazed grids were trampled 3.9% more often than their respective ungrazed grids, and measurements of cattle presence or density were correlated with the number of broken clay targets, suggesting that excluding cattle during breeding is an important management recommendation for the Florida Grasshopper Sparrow. Trampling rates within grazed enclosures were spatially homogeneous with respect to cattle infrastructure such as supplemental feeding troughs and fences, and forests and stocking density were poor predictors of trampling rates when excluding ungrazed grids. We used population viability analysis to compare quasi-extinction rates, intrinsic growth rates, and median abundance in grazed and ungrazed Florida Grasshopper Sparrow aggregations to further understand the biological significance of management aimed at reducing trampling rates during the breeding season. Simulations indicated that trampling from grazing increased quasi-extinction rates by 41% while reducing intrinsic growth rates by 0.048, and reducing median abundance by an average of 214 singing males after 50 years. Management should avoid grazing enclosures occupied by Florida Grasshopper Sparrows during the nesting season to minimize trampling rates. Our methods that combine trampling experiments with population viability analysis provide a framework for testing effects from trampling on other grassland ground-nesting birds, and can directly inform conservation and management of the Florida Grasshopper Sparrow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nesting structures for ground-nesting waterfowl may be an effective technique for increasing nesting success in regions in which nest success is below the 15% threshold needed to maintain a stable population. We studied the occupancy rate of artificial nesting structures called hen housesTM by Mallards (Anas platyrhynchos) nesting in two different wetland habitats, beaver ponds and sewage lagoons, in eastern Ontario during 1999–2001. We hypothesized that, because natural cover was sparse on sewage lagoons, Mallards would occupy hen houses at a higher rate on sewage lagoons than on beaver ponds. However, of the 248 hen houses distributed between beaver ponds and sewage lagoons, none was occupied by waterfowl. Common Grackles (Quiscalus quiscula) were the only avian species that nested in hen houses. However, Mallards successfully nested directly under several structures (n = 6) when water levels were low enough to expose the ground beneath them. Mayfield daily nest survival estimates for Mallards nesting in natural cover were similar on sewage lagoons and beaver ponds for all years (mean = 0.99) and were higher than most published estimates. Factors such as nesting cover, predation pressures, and structure design and material may influence the use of artificial hen houses and should be considered when planning a hen house program outside of the Prairie Pothole Region.