4 resultados para Right of way (Land).
Resumo:
The Aspen Parkland of Canada is one of the most important breeding areas for temperate nesting ducks in North America. The region is dominated by agricultural land use, with approximately 9.3 million ha in pasture land for cattle grazing. However, the effects of using land for cattle grazing on upland-nesting duck production are poorly understood. The current study was undertaken during 2001 and 2002 to investigate how nest density and nesting success of upland-nesting ducks varied with respect to the intensity of cattle grazing in the Aspen Parkland. We predicted that the removal and trampling of vegetation through cattle grazing would reduce duck nest density. Both positive and negative responses of duck nesting success to grazing have been reported in previous studies, leading us to test competing hypotheses that nesting success would (1) decline linearly with grazing intensity or (2) peak at moderate levels of grazing. Nearly 3300 ha of upland cover were searched during the study. Despite extensive and severe drought, nest searches located 302 duck nests. As predicted, nest density was higher in fields with lower grazing intensity and higher pasture health scores. A lightly grazed field with a pasture score of 85 out of a possible 100 was predicted to have 16.1 nests/100 ha (95% CI = 11.7–22.1), more than five times the predicted nest density of a heavily grazed field with a pasture score of 58 (3.3 nests/100 ha, 95% CI = 2.2–4.5). Nesting success was positively related to nest-site vegetation density across most levels of grazing intensity studied, supporting our hypothesis that reductions in vegetation caused by grazing would negatively affect nesting success. However, nesting success increased with grazing intensity at the field scale. For example, nesting success for a well-concealed nest in a lightly grazed field was 11.6% (95% CI = 3.6–25.0%), whereas nesting success for a nest with the same level of nest-site vegetation in a heavily grazed field was 33.9% (95% CI = 17.0–51.8%). Across the range of residual cover observed in this study, nests with above-average nest-site vegetation density had nesting success rates that exceeded the levels believed necessary to maintain duck populations. Our findings on complex and previously unreported relationships between grazing, nest density, and nesting success provide useful insights into the management and conservation of ground-nesting grassland birds.
Resumo:
Little is known about juvenile songbird movement in response to timber harvest, particularly in the boreal forest. If clearcut land cover facilitates movement, the availability of resources may increase. However, if clearcut land cover impedes movement, important post-fledging resources may be rendered inaccessible. Using radio telemetry, we tested the hypothesis that regenerating clearcut land cover would affect the movement of recently independent Yellow-rumped Myrtle Warblers (Dendroica coronata coronata) and Blackpoll Warblers (Dendroica striata) differently than forested land cover owing to intrinsic differences in each land-cover type or in how they are perceived. We found that both species moved extensively before migration. We also found that Blackpoll Warblers were quick to exit local areas composed of clearcut land cover and that both species were quick to exit neighborhoods composed of large proportions of clearcut land cover. However, if individuals encountered clearcut land cover when exiting the neighborhood, movement rate was slowed. Effectively, residency time decreased in clearcut neighborhoods and landscape connectivity was impeded by clearcut land cover. Our results suggest that clearcut land cover may represent low-quality habitat for both species during the post-fledging period. Further research is needed to determine if changes in movement behavior associated with landscape structure affect individual condition and higher-level ecological processes.
Resumo:
Mechanical operations such as mowing, tilling, seeding, and harvesting are well-known sources of direct avian mortality in agricultural fields. However, there are currently no mortality rate estimates available for any species group or larger jurisdiction. Even reviews of sources of mortality in birds have failed to address mechanical disturbance in farm fields. To overcome this information gap we provide estimates of total mortality rates by mechanical operations for five selected species across Canada. In our step-by-step modeling approach we (i) quantified the amount of various types of agricultural land in each Bird Conservation Region (BCR) in Canada, (ii) estimated population densities by region and agricultural habitat type for each selected species, (iii) estimated the average timing of mechanical agricultural activities, egg laying, and fledging, (iv) and used these values and additional demographical parameters to derive estimates of total mortality by species within each BCR. Based on our calculations the total annual estimated incidental take of young ranged from ~138,000 for Horned Lark (Eremophila alpestris) to as much as ~941,000 for Savannah Sparrow (Passerculus sandwichensis). Net losses to the fall flight of birds, i.e., those birds that would have fledged successfully in the absence of mechanical disturbance, were, for example ~321,000 for Bobolink (Dolichonyx oryzivorus) and ~483,000 for Savannah Sparrow. Although our estimates are subject to an unknown degree of uncertainty, this assessment is a very important first step because it provides a broad estimate of incidental take for a set of species that may be particularly vulnerable to mechanical operations and a starting point for future refinements of model parameters if and when they become available.
Resumo:
Land managers often respond to declining numbers of target species by creating additional areas of habitat. If these habitats are also subject to human disturbance, then their efforts may be wasted. The European Nightjar (Caprimulgus europaeus) is a ground-nesting bird that is listed as a species of European Conservation Concern. It appears to be susceptible to human disturbance during the breeding season. We examined habitat use and reproductive success over 10 years in a breeding population on 1335 ha of managed land in Nottinghamshire, England. The study site was divided into a heavily disturbed section and a less disturbed section of equal habitat availability, forming a natural long-term experiment. The site is open to the public, and visitor numbers approximately doubled during the study. We found that overall Nightjar density was significantly lower and there were significantly fewer breeding pairs in the heavily disturbed habitat compared with the less disturbed habitat. However, average breeding success per pair, in terms of eggs and fledglings produced, was not significantly different between the two sections across years. Our findings suggest that human recreational disturbance may drastically alter settlement patterns and nest site selection of arriving females in some migratory ground-nesting species and may reduce the utility of apparently suitable patches of remnant and created habitat. Land managers should bear this in mind when creating new areas of habitat that will also be accessible to the public. Our study also highlights the value of long-term population monitoring, which can detect trends that short-term studies may miss.