7 resultados para Restoration ecology
Resumo:
Many shorebirds are long-distance migrants and depend on the energy gained at stopover sites to complete migration. Competing hypotheses have described strategies used by migrating birds; the energy-selection hypothesis predicts that shorebirds attempt to maximize energy gained at stopover sites, whereas the time-selection hypothesis predicts that shorebirds attempt to minimize time spent at stopover sites. The energy- and time-selection hypotheses both predict that birds in better condition will depart sites sooner. However, numerous studies of stopover duration have found little support for this prediction, leading to the suggestion that migrating birds operate under energy and time constraints for only a small portion of the migratory season. During fall migration 2002, we tested the prediction that birds in better condition depart stopover sites sooner by examining the relationship between stopover duration and body condition for migrating Least Sandpipers (Calidris minutilla) at three stopover sites in the Lower Mississippi Alluvial Valley. We also tested the assumption made by the Lower Mississippi Alluvial Valley Migratory Bird Science Team that shorebirds stay in the Mississippi Valley for 10 d. The assumption of 10 d was used to estimate the amount of habitat required by shorebirds in the Mississippi Valley during fall migration; a period longer than 10 d would increase the estimate of the amount habitat required. We used multiple-day constancy models of apparent survival and program MARK to estimate stopover duration for 293 individually color-marked and resighted Least Sandpipers. We found that a four-day constancy interval and a site x quadratic time trend interaction term best modeled apparent survival. We found only weak support for body condition as a factor explaining length of stopover duration, which is consistent with findings from similar work. Stopover duration estimates were 4.1 d (95% CI = 2.8–6.1) for adult Least Sandpipers at Bald Knob National Wildlife Refuge, Arkansas, 6.5 d (95% CI = 4.9–8.7) for adult and 6.1 d (95% CI =4.2–9.1) for juvenile Least Sandpipers at Yazoo National Wildlife Refuge, Mississippi, and 6.9 d (95% CI = 5.5–8.7) for juvenile Least Sandpipers at Morgan Brake National Wildlife Refuge, Mississippi. Based on our estimates of stopover duration and the assumption made by the Lower Mississippi Alluvial Valley Migratory Bird Science Team, there is sufficient habitat in the lower Mississippi Valley to support shorebirds during fall migration.
Resumo:
Increases in Snow Goose (Chen caerulescens) populations and large-scale habitat changes in North America have contributed to the concentration of migratory waterfowl on fewer wetlands, reducing resource availability, and enhancing risks of disease transmission. Predicting wintering locations of migratory individuals is critical to guide wildlife population management and habitat restoration. We used stable carbon (δ13C), nitrogen (δ15N), and hydrogen (δ2H) isotope ratios in muscle tissue of wintering Snow Geese to discriminate four major wintering areas, the Playa Lake Region, Texas Gulf Coast, Louisiana Gulf Coast, and Arkansas, and infer the wintering locations of individuals collected later during the 2007 and 2008 spring migrations in the Rainwater Basin (RWB) of Nebraska. We predicted the wintering ground derivation of migrating Snow Geese using a likelihood-based approach. Our three-isotope analysis provided an efficient discrimination of the four wintering areas. The assignment model predicted that 53% [95% CI: 37-69] of our sample of Snow Geese from the RWB in 2007 had most likely originated in Louisiana, 38% [23-54] had wintered on Texas Gulf Coast, and 9% [0-20] in Arkansas; the assessment suggested that 89% [73-100] of our 2008 sample had most likely come from Texas Gulf Coast, 9% [0-27] from Louisiana Gulf Coast, and 2% [0-9] from Arkansas. Further segregation of wintering grounds and additional sampling of spring migrating Snow Geese would refine overall assignment and help explain interannual variations in migratory connectivity. The ability to distinguish origins of northbound geese can support the development of spatially-adaptive management strategies for the midcontinent Snow Goose population. Establishing migratory connectivity using isotope assignment techniques can be extended to other waterfowl species to determine critical habitat, evaluate population energy requirements, and inform waterfowl conservation and management strategies.
Resumo:
Across North America, Bald Eagle (Haliaeetus leucocephalus) populations appear to be recovering following bans of DDT. A limited number of studies from across North America have recorded a surplus of nonbreeding adult Bald Eagles in dense populations when optimal habitat and food become limited. Placentia Bay, Newfoundland is one of these. The area has one of the highest densities of Bald Eagles in eastern North America, and has recently experienced an increase in the proportion of nonbreeding adults within the population. We tested whether the observed Bald Eagle population trends in Placentia Bay, Newfoundland during the breeding seasons 1990-2009 are due to habitat saturation. We found no significant differences in habitat or food resource characteristics between occupied territories and pseudo-absence data or between nest sites with high vs. low nest activity/occupancy rates. Therefore there is no evidence for habitat saturation for Bald Eagles in Placentia Bay and alternative hypotheses for the high proportion of nonbreeding adults should be considered. The Newfoundland population provides an interesting case for examination because it did not historically appear to be affected by pollution. An understanding of Bald Eagle population dynamics in a relatively pristine area with a high density can be informative for restoration and conservation of Bald Eagle populations elsewhere.
Resumo:
Canadian and U.S. federal wildlife agencies completed four decadal surveys, spanning the years 1977 to 2009, to census colonial waterbirds breeding on the Great Lakes and adjoining bodies of water. In this paper, we reports abundance, distribution, and general population trends of three species: Black-crowned Night-Heron (Nycticorax nycticorax), Great Egret (Ardea alba), and Great Blue Heron (Ardea herodias). Estimates of nest numbers ranged from approximately 4000-6100 for the Black-crowned Night-Heron, 250-1900 for the Great Egret, and 3800-6400 for the Great Blue Heron. Average annual rates of change in nest numbers between the first (1977) and fourth (2008) census were −1% for the Black-crowned Night-Heron, +23% for the Great Egret, and −0.27% for the Great Blue Heron. Across the 30-year census, Black-crowned Night-Heron estimates decreased in U.S. (−57%) but increased (+18%) in Canadian waters, Great Egret nests increased 1381% in Canadian waters with a smaller, but still substantial increase in the number of nests at U.S. colonies (+613%), and Great Blue Heron numbers increased 148% in Canadian waters and 713% in U.S. waters. Although a single factor cannot be clearly linked to changes observed in each species’ distribution, hydrological variation, habitat succession, nest competition with Double-crested Cormorants (Phalacrocorax auritus), and land use changes likely all contributed. Management activities should support both breeding and foraging conditions including restoration of early successional habitats and anticipate continued northward expansions in the distributions of these waterbirds.