2 resultados para Over sampling
Resumo:
Roadside surveys such as the Breeding Bird Survey (BBS) are widely used to assess the relative abundance of bird populations. The accuracy of roadside surveys depends on the extent to which surveys from roads represent the entire region under study. We quantified roadside land cover sampling bias in Tennessee, USA, by comparing land cover proportions near roads to proportions of the surrounding region. Roadside surveys gave a biased estimate of patterns across the region because some land cover types were over- or underrepresented near roads. These biases changed over time, introducing varying levels of distortion into the data. We constructed simulated population trends for five bird species of management interest based on these measured roadside sampling biases and on field data on bird abundance. These simulations indicated that roadside surveys may give overly negative assessments of the population trends of early successional birds and of synanthropic birds, but not of late-successional birds. Because roadside surveys are the primary source of avian population trend information in North America, we conclude that these surveys should be corrected for roadside land cover sampling bias. In addition, current recommendations about the need to create more early successional habitat for birds may need reassessment in the light of the undersampling of this habitat by roads.
Resumo:
The North American Breeding Bird Survey (BBS) is the principal source of data to inform researchers about the status of and trend for boreal forest birds. Unfortunately, little BBS coverage is available in the boreal forest, where increasing concern over the status of species breeding there has increased interest in northward expansion of the BBS. However, high disturbance rates in the boreal forest may complicate roadside monitoring. If the roadside sampling frame does not capture variation in disturbance rates because of either road placement or the use of roads for resource extraction, biased trend estimates might result. In this study, we examined roadside bias in the proportional representation of habitat disturbance via spatial data on forest “loss,” forest fires, and anthropogenic disturbance. In each of 455 BBS routes, the area disturbed within multiple buffers away from the road was calculated and compared against the area disturbed in degree blocks and BBS strata. We found a nonlinear relationship between bias and distance from the road, suggesting forest loss and forest fires were underrepresented below 75 and 100 m, respectively. In contrast, anthropogenic disturbance was overrepresented at distances below 500 m and underrepresented thereafter. After accounting for distance from road, BBS routes were reasonably representative of the degree blocks they were within, with only a few strata showing biased representation. In general, anthropogenic disturbance is overrepresented in southern strata, and forest fires are underrepresented in almost all strata. Similar biases exist when comparing the entire road network and the subset sampled by BBS routes against the amount of disturbance within BBS strata; however, the magnitude of biases differed. Based on our results, we recommend that spatial stratification and rotating panel designs be used to spread limited BBS and off-road sampling effort in an unbiased fashion and that new BBS routes be established where sufficient road coverage exists.