3 resultados para Online and off-line diagnosis and monitoring methods


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Birds are vulnerable to collisions with human-made fixed structures. Despite ongoing development and increases in infrastructure, we have few estimates of the magnitude of collision mortality. We reviewed the existing literature on avian mortality associated with transmission lines and derived an initial estimate for Canada. Estimating mortality from collisions with power lines is challenging due to the lack of studies, especially from sites within Canada, and due to uncertainty about the magnitude of detection biases. Detection of bird collisions with transmission lines varies due to habitat type, species size, and scavenging rates. In addition, birds can be crippled by the impact and subsequently die, although crippling rates are poorly known and rarely incorporated into estimates. We used existing data to derive a range of estimates of avian mortality associated with collisions with transmission lines in Canada by incorporating detection, scavenging, and crippling biases. There are 231,966 km of transmission lines across Canada, mostly in the boreal forest. Mortality estimates ranged from 1 million to 229.5 million birds per year, depending on the bias corrections applied. We consider our most realistic estimate, taking into account variation in risk across Canada, to range from 2.5 million to 25.6 million birds killed per year. Data from multiple studies across Canada and the northern U.S. indicate that the most vulnerable bird groups are (1) waterfowl, (2) grebes, (3) shorebirds, and (4) cranes, which is consistent with other studies. Populations of several groups that are vulnerable to collisions are increasing across Canada (e.g., waterfowl, raptors), which suggests that collision mortality, at current levels, is not limiting population growth. However, there may be impacts on other declining species, such as shorebirds and some species at risk, including Alberta’s Trumpeter Swans (Cygnus buccinator) and western Canada’s endangered Whooping Cranes (Grus americana). Collisions may be more common during migration, which underscores the need to understand impacts across the annual cycle. We emphasize that these estimates are preliminary, especially considering the absence of Canadian studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The amateur birding community has a long and proud tradition of contributing to bird surveys and bird atlases. Coordinated activities such as Breeding Bird Atlases and the Christmas Bird Count are examples of "citizen science" projects. With the advent of technology, Web 2.0 sites such as eBird have been developed to facilitate online sharing of data and thus increase the potential for real-time monitoring. However, as recently articulated in an editorial in this journal and elsewhere, monitoring is best served when based on a priori hypotheses. Harnessing citizen scientists to collect data following a hypothetico-deductive approach carries challenges. Moreover, the use of citizen science in scientific and monitoring studies has raised issues of data accuracy and quality. These issues are compounded when data collection moves into the Web 2.0 world. An examination of the literature from social geography on the concept of "citizen sensors" and volunteered geographic information (VGI) yields thoughtful reflections on the challenges of data quality/data accuracy when applying information from citizen sensors to research and management questions. VGI has been harnessed in a number of contexts, including for environmental and ecological monitoring activities. Here, I argue that conceptualizing a monitoring project as an experiment following the scientific method can further contribute to the use of VGI. I show how principles of experimental design can be applied to monitoring projects to better control for data quality of VGI. This includes suggestions for how citizen sensors can be harnessed to address issues of experimental controls and how to design monitoring projects to increase randomization and replication of sampled data, hence increasing scientific reliability and statistical power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding source-sink dynamics of game birds is essential to harvest and habitat management but acquiring this information is often logistically and financially challenging using traditional methods of population surveys and banding studies. This is especially true for species such as the American Black Duck (Anas rubripes), which have low breeding densities and extensive breeding ranges that necessitate extensive surveys and banding programs across eastern North America. Despite this effort, the contribution of birds fledged from various landscapes and habitat types within specific breeding ranges to regional harvest is largely unknown but remains an important consideration in adaptive harvest management and targeted habitat conservation strategies. We investigated if stable isotope (δD, δ13C, δ15N) could augment our present understanding of connectivity between breeding and harvest areas and so provide information relevant to the two main management strategies for black ducks, harvest and habitat management. We obtained specimens from 200 hatch-year Black Duck wings submitted to the Canadian Wildlife Service Species Composition Survey. Samples were obtained from birds harvested in Western, Central, and Eastern breeding/harvest subregions to provide a sample representative of the range and harvest rate of birds harvested in Canada. We sampled only hatch-year birds to provide an unambiguous and direct link between production and harvest areas. Marine origins were assigned to 12%, 7%, and 5% of birds harvested in the Eastern, Central, and Western subregions, respectively. In contrast, 32%, 9%, and 5% of birds were assigned, respectively, to agricultural origins. All remaining birds were assigned to nonagricultural origins. We portrayed probability of origin using a combination of Bayesian statistical and GIS methods. Placement of most eastern birds was western Nova Scotia, eastern New Brunswick, Prince Edward Island, and southern Newfoundland. Agricultural birds from the Central region were consistent with the Saguenay region of Québec and the eastern claybelt with nonagricultural birds originating in the boreal. Western nonagricultural birds were associated with broad boreal origins from southern James Bay to Lake of the Woods and east to Cochrane, Ontario. Our work shows that the geographic origins, landscape, and habitat associations of hatch-year Black Ducks can be inferred using this technique and we recommend that a broad-scale isotopic study using a large sample of Canadian and US harvested birds be implemented to provide a continental perspective of source-sink population dynamics.