2 resultados para Neotropical fauna
Resumo:
Although studies often report that densities of many forest birds are negatively related to urbanization, the mechanisms guiding this pattern are poorly understood. Our objective was to use a population simulation to examine the relative influence of six demographic and behavioral processes on patterns of avian abundance in urbanizing landscapes. We constructed an individual-based population simulation model representing the annual cycle of a Neotropical migratory songbird. Each simulation was performed under two landscape scenarios. The first scenario had similar proportions of high- and low-quality habitat across the urban to rural gradient. Under the first scenario, avian density was negatively related to urbanization only when rural habitats were perceived to be of higher quality than they actually were. The second landscape scenario had declining proportions of high-quality habitat as urbanization increased. Under the second scenario, each mechanism generated a negative relationship between density and urbanization. The strongest effect on density resulted when birds preferentially selected habitats in landscapes from which they fledged or were constrained from dispersing. The next strongest patterns occurred when birds directly evaluated habitat quality and accurately selected the highest-quality available territories. When birds selected habitats based on the presence of conspecifics, the density–urbanization relationship was only one-third the strength of other habitat selection mechanisms and only occurred under certain levels of population survival. Although differences in adult or nest survival in the face of random habitat selection still elicited reduced densities in urban landscapes, the relationships between urbanization and density were weaker than those produced by the conspecific attraction mechanism. Results from our study identify key predictions and areas for future research, including assessing habitat quality in urban and rural areas in order to determine if habitats in urban areas are underutilized.
Resumo:
Understanding the effect of habitat fragmentation is a fundamental yet complicated aim of many ecological studies. Beni savanna is a naturally fragmented forest habitat, where forest islands exhibit variation in resources and threats. To understand how the availability of resources and threats affect the use of forest islands by parrots, we applied occupancy modeling to quantify use and detection probabilities for 12 parrot species on 60 forest islands. The presence of urucuri (Attalea phalerata) and macaw (Acrocomia aculeata) palms, the number of tree cavities on the islands, and the presence of selective logging,and fire were included as covariates associated with availability of resources and threats. The model-selection analysis indicated that both resources and threats variables explained the use of forest islands by parrots. For most species, the best models confirmed predictions. The number of cavities was positively associated with use of forest islands by 11 species. The area of the island and the presence of macaw palm showed a positive association with the probability of use by seven and five species, respectively, while selective logging and fire showed a negative association with five and six species, respectively. The Blue-throated Macaw (Ara glaucogularis), the critically endangered parrot species endemic to our study area, was the only species that showed a negative association with both threats. Monitoring continues to be essential to evaluate conservation and management actions of parrot populations. Understanding of how species are using this natural fragmented habitat will help determine which fragments should be preserved and which conservation actions are needed.