2 resultados para Low-density Lipoproteins
Resumo:
Digital map products that integrate long-term duck population and land-use data are currently being used to guide conservation program delivery on the Canadian Prairies. However, understanding the inter-relationships between ducks and other grassland bird species would greatly enhance program planning and delivery. We hypothesized that ducks, and Northern Pintail (Anas acuta) in particular, may function as an umbrella guild for the overall breeding habitat quality for other grassland bird species. We compared grassland bird species richness and relative abundance among areas of low, moderate, and high predicted waterfowl breeding densities (i.e., duck density strata) in the southern Missouri Coteau, Saskatchewan. We conducted roadside point counts and delineated habitats within a 400 m radius of each point. The duck high-density stratum supported greater avian species richness and abundance than did the duck low-density stratum. Overall, duck and other grassland bird species richness and abundance were moderately correlated, with all r between 0.37 and 0.69 (all P < 0.05). Although the habitat requirements of Northern Pintail may overlap with those of other grassland endemics, priority grassland bird species richness was only moderately correlated with total pintail abundance in both years, and the abundances of pintail and grassland songbirds listed by the Committee on the Status of Endangered Wildlife in Canada were not correlated. No differences in the mean number of priority grassland species were detected among the strata. Adequate critical habitat for several priority species may not be protected if conservation is focused only in areas of moderate to high wetland density because large tracts of contiguous, dry grassland habitat (e.g., pasture) occur infrequently in high-quality duck habitat.
Resumo:
The increase in coastal storm frequency and intensity expected under most climate change scenarios is likely to substantially modify beach configuration and associated habitats. This study aimed to analyze the impact of coastal storms on a nesting population of the endangered Piping Plover (Charadrius melodus melodus) in southeastern New Brunswick, Canada. Previous studies have shown that numbers of nesting Piping Plovers may increase following storms that create new nesting habitat at individual beaches. However, to our knowledge, no test of this pattern has been conducted over a regional scale. We hypothesized that Piping Plover abundance would increase after large coastal storms occurring during the nonbreeding season. However, we expected a delay in the colonization of newly created habitat owing to low-density populations, combined with high site fidelity of adults and high variability in survival rate of subadults. We tested this hypothesis using a 27-year (1986-2012) data set of Piping Plover abundance and productivity (nesting pairs and fledged young) collected at five sites in eastern New Brunswick. We identified 11 major storms that could potentially have modified Piping Plover habitat over the study period. The number of fledged young increased three years after a major storm, but the relationship was much weaker for the number of nesting pairs. These findings are consistent with the hypothesized increase in suitable habitat after coastal storms. Including storm occurrence with other factors influencing habitat quality will enhance Piping Plover conservation strategies.