4 resultados para Laying
Resumo:
Wetlands in southern Alberta are often managed to benefit waterfowl and cattle production. Effects on other species usually are not examined. I determined the effect of managed wetlands on upland-nesting shorebirds in southern Alberta by comparing numbers of breeding willets (Catoptrophorus semipalmatus), marbled godwits (Limosa fedoa), and long-billed curlews (Numenius americanus) among areas of managed wetlands, natural wetland basins, and no wetland basins from 1995 to 2000. Surveys were carried out at 21 sites three times each year. Nine to ten of these areas (each 2 km2) were searched for nests annually from 1998–2000. Numbers of willets and marbled godwits and their nests were always highest in areas with managed wetlands, probably because almost all natural wetland basins were dry in this region in most years. Densities of willets seen during pre-incubation surveys averaged 2.3 birds/km2 in areas of managed wetlands, 0.4 in areas of natural wetland basins, and 0.1 in areas with no wetland basins. Nest densities of willets (one search each season) averaged 1.5, 0.9, and 0.3 nests/km2 in areas of managed, natural, and no wetland basins, respectively. Similarly, pre-incubation surveys averaged 1.6, 0.6, and 0.2 godwits/km2 in areas of managed, natural, and no wetland basins, and 1.2, 0.3, and 0.1 godwit nests/km2. For long-billed curlews, pre-incubation surveys averaged 0.1, 0.2, and 0.1 birds/km2, and 0, 0.2, and 0 nests/km2. Nest success was similar in areas with and without managed wetlands. Shallow managed wetlands in this region appear beneficial to willets and marbled godwits, but not necessarily to long-billed curlews. Only 8% of marked willets and godwits with nests in the area were seen or heard during surveys, compared with 29% of pre-laying individuals and 42% of birds with broods. This suggests that a low and variable percentage of these birds is counted during breeding bird surveys, likely limiting their ability to adequately monitor populations of these species.
Resumo:
Populations on the periphery of a species' range may experience more severe environmental conditions relative to populations closer to the core of the range. As a consequence, peripheral populations may have lower reproductive success or survival, which may affect their persistence. In this study, we examined the influence of environmental conditions on breeding biology and nest survival in a threatened population of Loggerhead Shrikes (Lanius ludovicianus) at the northern limit of the range in southeastern Alberta, Canada, and compared our estimates with those from shrike populations elsewhere in the range. Over the 2-year study in 1992–1993, clutch sizes averaged 6.4 eggs, and most nests were initiated between mid-May and mid-June. Rate of renesting following initial nest failure was 19%, and there were no known cases of double-brooding. Compared with southern populations, rate of renesting was lower and clutch sizes tended to be larger, whereas the length of the nestling and hatchling periods appeared to be similar. Most nest failures were directly associated with nest predators, but weather had a greater direct effect in 1993. Nest survival models indicated higher daily nest survival during warmer temperatures and lower precipitation, which may include direct effects of weather on nestlings as well as indirect effects on predator behavior or food abundance. Daily nest survival varied over the nesting cycle in a curvilinear pattern, with a slight increase through laying, approximately constant survival through incubation, and a decline through the nestling period. Partial brood loss during the nestling stage was high, particularly in 1993, when conditions were cool and wet. Overall, the lower likelihood of renesting, lower nest survival, and higher partial brood loss appeared to depress reproductive output in this population relative to those elsewhere in the range, and may have increased susceptibility to population declines.
Resumo:
The effort expended on reproduction may entail future costs, such as reduced survival or fecundity, and these costs can have an important influence on life-history optimization. For birds with precocial offspring, hypothesized costs of reproduction have typically emphasized nutritional and energetic investments in egg formation and incubation. We measured seasonal survival of 3856 radio-marked female Mallards (Anas platyrhynchos) from arrival on the breeding grounds through brood-rearing or cessation of breeding. There was a 2.5-fold direct increase in mortality risk associated with incubating nests in terrestrial habitats, whereas during brood-rearing when breeding females occupy aquatic habitats, mortality risk reached seasonal lows. Mortality risk also varied with calendar date and was highest during periods when large numbers of Mallards were nesting, suggesting that prey-switching behaviors by common predators may exacerbate risks to adults in all breeding stages. Although prior investments in egg laying and incubation affected mortality risk, most relationships were not consistent with the cost of reproduction hypothesis; birds with extensive prior investments in egg production or incubation typically survived better, suggesting that variation in individual quality drove both relationships. We conclude that for breeding female Mallards, the primary cost of reproduction is a fixed cost associated with placing oneself at risk to predators while incubating nests in terrestrial habitats.
Resumo:
Mechanical operations such as mowing, tilling, seeding, and harvesting are well-known sources of direct avian mortality in agricultural fields. However, there are currently no mortality rate estimates available for any species group or larger jurisdiction. Even reviews of sources of mortality in birds have failed to address mechanical disturbance in farm fields. To overcome this information gap we provide estimates of total mortality rates by mechanical operations for five selected species across Canada. In our step-by-step modeling approach we (i) quantified the amount of various types of agricultural land in each Bird Conservation Region (BCR) in Canada, (ii) estimated population densities by region and agricultural habitat type for each selected species, (iii) estimated the average timing of mechanical agricultural activities, egg laying, and fledging, (iv) and used these values and additional demographical parameters to derive estimates of total mortality by species within each BCR. Based on our calculations the total annual estimated incidental take of young ranged from ~138,000 for Horned Lark (Eremophila alpestris) to as much as ~941,000 for Savannah Sparrow (Passerculus sandwichensis). Net losses to the fall flight of birds, i.e., those birds that would have fledged successfully in the absence of mechanical disturbance, were, for example ~321,000 for Bobolink (Dolichonyx oryzivorus) and ~483,000 for Savannah Sparrow. Although our estimates are subject to an unknown degree of uncertainty, this assessment is a very important first step because it provides a broad estimate of incidental take for a set of species that may be particularly vulnerable to mechanical operations and a starting point for future refinements of model parameters if and when they become available.