2 resultados para Hauing intensification


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many common bird species have declined as a result of agricultural intensification and this could be mitigated by organic farming. We paired sites for habitat and geographical location on organic and nonorganic farms in Ontario, Canada to test a priori predictions of effects on birds overall, 9 guilds and 22 species in relation to candidate models for farming practices (13 variables), local habitat features (12 variables), or habitat features that influence susceptibility to predation. We found that: (1) Overall bird abundance, but not richness, was significantly (p < 0.05) higher on organic sites (mean 43.1 individuals per site) than nonorganic sites (35.8 individuals per site). Significantly more species of birds were observed for five guilds, including primary grassland birds, on organic vs. nonorganic sites. No guild had higher richness or abundance on nonorganic farms; (2) Farming practice models were the best (ΔAIC < 4) for abundance of birds overall, primary grassland bird richness, sallier aerial insectivore richness and abundance, and abundance of ground nesters; (3) Habitat models were the best for overall richness, Neotropical migrant abundance, richness and abundance of Ontario-USA-Mexico (short-distance) migrants and resident richness; (4) Predation models were the best for richness of secondary grassland birds and ground feeders; (5) A combination of variables from the model types were best for richness or abundance overall, 13 of 18 guilds (richness and abundance) and 16 of 22 species analyzed. Five of 10 farming practice variables (including herbicide use, organic farm type) and 9 of 13 habitat variables (including hedgerow length, proportion of hay) were significant in best models. Risk modeling indicated that herbicide use could decrease primary grassland birds by one species (35% decline from 3.4 to 2.3 species) per site. Organic farming could benefit species of conservation concern by 49% (an increase from 7.6 to 11.4 grassland birds). An addition of 63 m of hedgerow could increase abundance and richness of short distance migrants by 50% (3.0 to 4.8 and 1.3 to 2.0, respectively). Increasing the proportion of hay on nonorganic farms to 50% could increase abundance of primary grassland bird by 40% (6.7 to 9.4). Our results provide support for alternative farmland designs and agricultural management systems that could enhance select bird species in farmland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Across North America, grassland songbirds have undergone steep population declines over recent decades, commonly attributed to agricultural intensification. Understanding the potential interactions between the impacts of climate change on the future distributions of these species and the availability of suitable vegetation for nesting can support improved risk assessments and conservation planning for this group of species. We used North American bioclimatic niche models to examine future changes in suitable breeding climate for 15 grassland songbird species at their current northern range limits along the boreal forest–prairie ecotone in Alberta, Canada. Our climate suitability projections, combined with the current distribution of native and tame pasture and cropland in Alberta, suggest that some climate-mediated range expansion of grassland songbirds in Alberta is possible. For six of the eight species projected to experience expansions of suitable climate area in Alberta, this suitable climate partly overlaps the current distribution of suitable land cover. Additionally, for more than half of the species examined, most of the area of currently suitable climate was projected to remain suitable to the end of the century, highlighting the importance of Alberta for the long-term persistence of these species. Some northern prairie-endemic species exhibited substantial projected northward shifts of both the northern and southern edges of the area of suitable climate. Baird’s Sparrow (Ammodramus bairdii) and Sprague’s Pipit (Anthus spragueii), both at-risk grassland specialists, are predicted to have limited climate stability within their current ranges, and their expansion into new areas of suitable climate may be limited by the availability of suitable land cover. Our results highlight the importance of the preservation and restoration of remaining suitable grassland habitat within areas of projected climate stability and beyond current northern range limits for the long-term persistence of many grassland songbird species in the face of climate change.