18 resultados para Grassland ecology
Resumo:
Declining grassland breeding bird populations have led to increased efforts to assess habitat quality, typically by estimating density or relative abundance. Because some grassland habitats may function as ecological traps, a more appropriate metric for determining quality may be breeding success. Between 1994 and 2003 we gathered data on the nest fates of Eastern Meadowlarks (Sturnella magna), Bobolinks (Dolichonyx oryzivorous), and Savannah Sparrows (Passerculus sandwichensis) in a series of fallow fields and pastures/hayfields in western New York State. We calculated daily survival probabilities using the Mayfield method, and used the logistic-exposure method to model effects of predictor variables on nest success. Nest survival probabilities were 0.464 for Eastern Meadowlarks (n = 26), 0.483 for Bobolinks (n = 91), and 0.585 for Savannah Sparrows (n = 152). Fledge dates for first clutches ranged between 14 June and 23 July. Only one obligate grassland bird nest was parasitized by Brown-headed Cowbirds (Molothrus ater), for an overall brood parasitism rate of 0.004. Logistic-exposure models indicated that daily nest survival probabilities were higher in pastures/hayfields than in fallow fields. Our results, and those from other studies in the Northeast, suggest that properly managed cool season grassland habitats in the region may not act as ecological traps, and that obligate grassland birds in the region may have greater nest survival probabilities, and lower rates of Brown-headed Cowbird parasitism, than in many parts of the Midwest.
Resumo:
Grassland bird species continue to decline steeply across North America. Road-based surveys such as the North American Breeding Bird Survey (BBS) are often used to estimate trends and population sizes and to build species distribution models for grassland birds, although roadside survey counts may introduce bias in estimates because of differences in habitats along roadsides and in off-road surveys. We tested for differences in land cover composition and in the avian community on 21 roadside-based survey routes and in an equal number of adjacent off-road walking routes in the grasslands of southern Alberta, Canada. Off-road routes (n = 225 point counts) had more native grassland and short shrubs and less fallow land and road area than the roadside routes (n = 225 point counts). Consequently, 17 of the 39 bird species differed between the two route types in frequency of occurrence and relative abundance, measured using an indicator species analysis. Six species, including five obligate grassland species, were more prevalent at off-road sites; they included four species listed under the Canadian federal Species At Risk Act or listed by the Committee on the Status of Endangered Wildlife in Canada: Sprague’s Pipit (Anthus spragueii), Baird’s Sparrow (Ammodramus bairdii), the Chestnut-collared Longspur (Calcarius ornatus), and McCown’s Longspur (Rhynchophanes mccownii). The six species were as much as four times more abundant on off-road sites. Species more prevalent along roadside routes included common species and those typical of farmland and other human-modified habitats, e.g., the European Starling (Sturnus vulgaris), the Black-billed Magpie (Pica hudsonia), and the House Sparrow (Passer domesticus). Differences in avian community composition between roadside and off-road surveys suggest that the use of BBS data when generating population estimates or distribution models may overestimate certain common species and underestimate others of conservation concern. Our results highlight the need to develop appropriate corrections for bias in estimates derived from roadside sampling, and the need to design surveys that sample bird communities across a more representative cross-section of the landscape, both near and far from roads.
Resumo:
Across North America, grassland songbirds have undergone steep population declines over recent decades, commonly attributed to agricultural intensification. Understanding the potential interactions between the impacts of climate change on the future distributions of these species and the availability of suitable vegetation for nesting can support improved risk assessments and conservation planning for this group of species. We used North American bioclimatic niche models to examine future changes in suitable breeding climate for 15 grassland songbird species at their current northern range limits along the boreal forest–prairie ecotone in Alberta, Canada. Our climate suitability projections, combined with the current distribution of native and tame pasture and cropland in Alberta, suggest that some climate-mediated range expansion of grassland songbirds in Alberta is possible. For six of the eight species projected to experience expansions of suitable climate area in Alberta, this suitable climate partly overlaps the current distribution of suitable land cover. Additionally, for more than half of the species examined, most of the area of currently suitable climate was projected to remain suitable to the end of the century, highlighting the importance of Alberta for the long-term persistence of these species. Some northern prairie-endemic species exhibited substantial projected northward shifts of both the northern and southern edges of the area of suitable climate. Baird’s Sparrow (Ammodramus bairdii) and Sprague’s Pipit (Anthus spragueii), both at-risk grassland specialists, are predicted to have limited climate stability within their current ranges, and their expansion into new areas of suitable climate may be limited by the availability of suitable land cover. Our results highlight the importance of the preservation and restoration of remaining suitable grassland habitat within areas of projected climate stability and beyond current northern range limits for the long-term persistence of many grassland songbird species in the face of climate change.
Resumo:
Many shorebirds are long-distance migrants and depend on the energy gained at stopover sites to complete migration. Competing hypotheses have described strategies used by migrating birds; the energy-selection hypothesis predicts that shorebirds attempt to maximize energy gained at stopover sites, whereas the time-selection hypothesis predicts that shorebirds attempt to minimize time spent at stopover sites. The energy- and time-selection hypotheses both predict that birds in better condition will depart sites sooner. However, numerous studies of stopover duration have found little support for this prediction, leading to the suggestion that migrating birds operate under energy and time constraints for only a small portion of the migratory season. During fall migration 2002, we tested the prediction that birds in better condition depart stopover sites sooner by examining the relationship between stopover duration and body condition for migrating Least Sandpipers (Calidris minutilla) at three stopover sites in the Lower Mississippi Alluvial Valley. We also tested the assumption made by the Lower Mississippi Alluvial Valley Migratory Bird Science Team that shorebirds stay in the Mississippi Valley for 10 d. The assumption of 10 d was used to estimate the amount of habitat required by shorebirds in the Mississippi Valley during fall migration; a period longer than 10 d would increase the estimate of the amount habitat required. We used multiple-day constancy models of apparent survival and program MARK to estimate stopover duration for 293 individually color-marked and resighted Least Sandpipers. We found that a four-day constancy interval and a site x quadratic time trend interaction term best modeled apparent survival. We found only weak support for body condition as a factor explaining length of stopover duration, which is consistent with findings from similar work. Stopover duration estimates were 4.1 d (95% CI = 2.8–6.1) for adult Least Sandpipers at Bald Knob National Wildlife Refuge, Arkansas, 6.5 d (95% CI = 4.9–8.7) for adult and 6.1 d (95% CI =4.2–9.1) for juvenile Least Sandpipers at Yazoo National Wildlife Refuge, Mississippi, and 6.9 d (95% CI = 5.5–8.7) for juvenile Least Sandpipers at Morgan Brake National Wildlife Refuge, Mississippi. Based on our estimates of stopover duration and the assumption made by the Lower Mississippi Alluvial Valley Migratory Bird Science Team, there is sufficient habitat in the lower Mississippi Valley to support shorebirds during fall migration.
Resumo:
Digital map products that integrate long-term duck population and land-use data are currently being used to guide conservation program delivery on the Canadian Prairies. However, understanding the inter-relationships between ducks and other grassland bird species would greatly enhance program planning and delivery. We hypothesized that ducks, and Northern Pintail (Anas acuta) in particular, may function as an umbrella guild for the overall breeding habitat quality for other grassland bird species. We compared grassland bird species richness and relative abundance among areas of low, moderate, and high predicted waterfowl breeding densities (i.e., duck density strata) in the southern Missouri Coteau, Saskatchewan. We conducted roadside point counts and delineated habitats within a 400 m radius of each point. The duck high-density stratum supported greater avian species richness and abundance than did the duck low-density stratum. Overall, duck and other grassland bird species richness and abundance were moderately correlated, with all r between 0.37 and 0.69 (all P < 0.05). Although the habitat requirements of Northern Pintail may overlap with those of other grassland endemics, priority grassland bird species richness was only moderately correlated with total pintail abundance in both years, and the abundances of pintail and grassland songbirds listed by the Committee on the Status of Endangered Wildlife in Canada were not correlated. No differences in the mean number of priority grassland species were detected among the strata. Adequate critical habitat for several priority species may not be protected if conservation is focused only in areas of moderate to high wetland density because large tracts of contiguous, dry grassland habitat (e.g., pasture) occur infrequently in high-quality duck habitat.
Resumo:
Livestock grazing in the shortgrass steppe of the Intermountain region of British Columbia is predicted to have significant effects on grassland habitats and their associated ground-nesting bird communities. We tested whether grazed and ungrazed sites could be discriminated on the basis of their vegetation communities, whether the abundance of two ground-nesting bird species, Vesper Sparrow (Pooecetes gramineus) and Western Meadowlark (Sturnella neglecta), differed between grazed and ungrazed sites, and whether vegetation variables found to differ between grazed and ungrazed plots could be used to predict the abundance of the two bird species at a fine scale. Grazed sites were easily distinguishable from a site that had been ungrazed for >30 years based on the structure and composition of their vegetation communities. However, more detailed grazing categories could not be distinguished on the basis of vegetation characteristics. Despite the existence of grazing effects on vegetation structure and composition, we found no consistent differences in abundance of Vesper Sparrows and Western Meadowlarks between the grazed and ungrazed sites. However, there was weak evidence that the abundance of both species was higher at fine-scale plots (100 m radius point count station) with less bare ground and taller vegetation. Bare ground cover was lower on grazed plots, but vegetation was taller on ungrazed plots. Combined, our results suggest that low intensity grazing leads to grassland habitat change with both negative and positive effects on Vesper Sparrows and Western Meadowlarks, resulting in no net change in their broad-scale abundance.
Resumo:
In the northeastern United States, grassland birds regularly use agricultural fields as nesting habitat. However, birds that nest in these fields regularly experience nest failure as a result of agricultural practices, such as mowing and grazing. Therefore, information on both spatial and temporal patterns of habitat use is needed to effectively manage these species. We addressed these complex habitat use patterns by conducting point counts during three time intervals between May 21, 2002 and July 2, 2002 in agricultural fields across the Champlain Valley in Vermont and New York. Early in the breeding season, Bobolinks (Dolichonyx oryzivorus) used fields in which the landscape within 2500 m was dominated by open habitats. As mowing began, suitable habitat within 500 m became more important. Savannah Sparrows (Passerculus sandwichensis) initially used fields that contained a high proportion of suitable habitat within 500 m. After mowing, features of the field (i.e., size and amount of woody edge) became more important. Each species responded differently to mowing: Savannah Sparrows were equally abundant in mowed and uncut fields, whereas Bobolinks were more abundant in uncut fields. In agricultural areas in the Northeast, large areas (2000 ha) that are mostly nonforested and undeveloped should be targeted for conservation. Within large open areas, smaller patches (80 ha) should be maintained as high-quality, late-cut grassland habitat.
Resumo:
Many common bird species have declined as a result of agricultural intensification and this could be mitigated by organic farming. We paired sites for habitat and geographical location on organic and nonorganic farms in Ontario, Canada to test a priori predictions of effects on birds overall, 9 guilds and 22 species in relation to candidate models for farming practices (13 variables), local habitat features (12 variables), or habitat features that influence susceptibility to predation. We found that: (1) Overall bird abundance, but not richness, was significantly (p < 0.05) higher on organic sites (mean 43.1 individuals per site) than nonorganic sites (35.8 individuals per site). Significantly more species of birds were observed for five guilds, including primary grassland birds, on organic vs. nonorganic sites. No guild had higher richness or abundance on nonorganic farms; (2) Farming practice models were the best (ΔAIC < 4) for abundance of birds overall, primary grassland bird richness, sallier aerial insectivore richness and abundance, and abundance of ground nesters; (3) Habitat models were the best for overall richness, Neotropical migrant abundance, richness and abundance of Ontario-USA-Mexico (short-distance) migrants and resident richness; (4) Predation models were the best for richness of secondary grassland birds and ground feeders; (5) A combination of variables from the model types were best for richness or abundance overall, 13 of 18 guilds (richness and abundance) and 16 of 22 species analyzed. Five of 10 farming practice variables (including herbicide use, organic farm type) and 9 of 13 habitat variables (including hedgerow length, proportion of hay) were significant in best models. Risk modeling indicated that herbicide use could decrease primary grassland birds by one species (35% decline from 3.4 to 2.3 species) per site. Organic farming could benefit species of conservation concern by 49% (an increase from 7.6 to 11.4 grassland birds). An addition of 63 m of hedgerow could increase abundance and richness of short distance migrants by 50% (3.0 to 4.8 and 1.3 to 2.0, respectively). Increasing the proportion of hay on nonorganic farms to 50% could increase abundance of primary grassland bird by 40% (6.7 to 9.4). Our results provide support for alternative farmland designs and agricultural management systems that could enhance select bird species in farmland.
Resumo:
The Streaked Horned Lark (Eremophila alpestris strigata) is listed as endangered by the State of Washington, USA and by Canada under the Species at Risk Act and is also classified as a federal candidate for listing under the Endangered Species Act in the USA. A substantial portion of Streaked Horned Lark habitat has been lost or degraded, and range contraction has occurred in Oregon, Washington, and British Columbia. We estimate the vital rates (fecundity, adult and juvenile survival) and population growth rate (λ) for Streaked Horned Larks breeding in Washington, USA and conduct a Life-Stage Simulation Analysis (LSA) to evaluate which vital rate has the greatest influence on λ. We simulated changes in the three vital rates to examine how much they would need to be adjusted either independently or in concert to achieve a stable Streaked Horned Lark population (λ = 1). We also evaluated which fecundity component (the number of fledglings per egg laid or renesting interval) had the greatest impact on λ. The estimate of population growth suggests that Streaked Horned Larks in Washington are declining rapidly (λ = 0.62 ± 0.10) and that local breeding sites are not sustainable without immigration. The LSA results indicate that adult survival had the greatest influence on λ, followed by juvenile survival and fecundity. However, increases in vital rates led to λ = 1 only when adult survival was raised from 0.47 to 0.85, juvenile survival from 0.17 to 0.58, and fecundity from 0.91 to 3.09. Increases in breeding success and decreases in the renesting interval influenced λ similarly; however, λ did not reach 1 even when breeding success was raised to 100% or renesting intervals were reduced to 1 day. Only when all three vital rates were increased simultaneously did λ approach 1 without requiring highly unrealistic increases in each vital rate. We conclude that conservation activities need to target all or multiple vital rates to be successful. The baseline data presented here and subsequent efforts to manage Streaked Horned Larks will provide valuable information for management of other declining Horned Lark subspecies and other grassland songbirds across North America.
Resumo:
Native grasslands have been altered to a greater extent than any other biome in North America. The habitats and resources needed to support breeding performance of grassland birds endemic to prairie ecosystems are currently threatened by land management practices and impending climate change. Climate models for the Great Plains prairie region predict a future of hotter and drier summers with strong multiyear droughts and more frequent and severe precipitation events. We examined how fluctuations in weather conditions in eastern Colorado influenced nest survival of an avian species that has experienced recent population declines, the Mountain Plover (Charadrius montanus). Nest survival averaged 27.2% over a 7-yr period (n = 936 nests) and declined as the breeding season progressed. Nest survival was favored by dry conditions and cooler temperatures. Projected changes in regional precipitation patterns will likely influence nest survival, with positive influences of predicted declines in summer rainfall yet negative effects of more intense rain events. The interplay of climate change and land use practices within prairie ecosystems may result in Mountain Plovers shifting their distribution, changing local abundance, and adjusting fecundity to adapt to their changing environment.