3 resultados para Cycle of citizen literacy
Resumo:
Although studies often report that densities of many forest birds are negatively related to urbanization, the mechanisms guiding this pattern are poorly understood. Our objective was to use a population simulation to examine the relative influence of six demographic and behavioral processes on patterns of avian abundance in urbanizing landscapes. We constructed an individual-based population simulation model representing the annual cycle of a Neotropical migratory songbird. Each simulation was performed under two landscape scenarios. The first scenario had similar proportions of high- and low-quality habitat across the urban to rural gradient. Under the first scenario, avian density was negatively related to urbanization only when rural habitats were perceived to be of higher quality than they actually were. The second landscape scenario had declining proportions of high-quality habitat as urbanization increased. Under the second scenario, each mechanism generated a negative relationship between density and urbanization. The strongest effect on density resulted when birds preferentially selected habitats in landscapes from which they fledged or were constrained from dispersing. The next strongest patterns occurred when birds directly evaluated habitat quality and accurately selected the highest-quality available territories. When birds selected habitats based on the presence of conspecifics, the density–urbanization relationship was only one-third the strength of other habitat selection mechanisms and only occurred under certain levels of population survival. Although differences in adult or nest survival in the face of random habitat selection still elicited reduced densities in urban landscapes, the relationships between urbanization and density were weaker than those produced by the conspecific attraction mechanism. Results from our study identify key predictions and areas for future research, including assessing habitat quality in urban and rural areas in order to determine if habitats in urban areas are underutilized.
Resumo:
This study examined the influence of a spruce budworm (Choristoneura fumiferana (Clem.)) outbreak on a boreal mixed-wood bird community in forest stands ranging in age from 0 to 223 yr. We asked if (1) patterns of species response were consistent with the existence of spruce budworm specialists, i.e., species that respond in a stronger quantitative or qualitative way than other species; (2) the superabundance of food made it possible for species to expand their habitat use in age classes that were normally less used; and (3) the response to budworm was limited to specialists or was it more widespread. Results here indicated that three species, specifically the Bay-breasted Warbler (Dendroica castanea), Tennessee Warbler (Vermivora peregrina), and Cape May Warbler (Dendroica tigrina), had a larger numerical response to the budworm outbreak. They responded with increases in density of up to tenfold over 4 or 5 yr. No other species responded with more than a twofold increase in the same time period. These species also showed a functional response by breeding more frequently in young stands aged 1–21 yr and intermediate stands aged 22–36 yr as budworm numbers increased. Our data also suggested that many species profited to a lesser extent from budworm outbreaks, but that this effect may be too subtle to detect in most studies. We found evidence of a positive numerical effect in at least 18 additional species in one or two stand-age categories but never in all three for any one species. Given the numerical response in many species and the potential influence of budworm on bird populations because of the vast extent of outbreaks, we believe that the population cycle of spruce budworm should be considered in any evaluation of population trends in eastern boreal birds.
Resumo:
The amateur birding community has a long and proud tradition of contributing to bird surveys and bird atlases. Coordinated activities such as Breeding Bird Atlases and the Christmas Bird Count are examples of "citizen science" projects. With the advent of technology, Web 2.0 sites such as eBird have been developed to facilitate online sharing of data and thus increase the potential for real-time monitoring. However, as recently articulated in an editorial in this journal and elsewhere, monitoring is best served when based on a priori hypotheses. Harnessing citizen scientists to collect data following a hypothetico-deductive approach carries challenges. Moreover, the use of citizen science in scientific and monitoring studies has raised issues of data accuracy and quality. These issues are compounded when data collection moves into the Web 2.0 world. An examination of the literature from social geography on the concept of "citizen sensors" and volunteered geographic information (VGI) yields thoughtful reflections on the challenges of data quality/data accuracy when applying information from citizen sensors to research and management questions. VGI has been harnessed in a number of contexts, including for environmental and ecological monitoring activities. Here, I argue that conceptualizing a monitoring project as an experiment following the scientific method can further contribute to the use of VGI. I show how principles of experimental design can be applied to monitoring projects to better control for data quality of VGI. This includes suggestions for how citizen sensors can be harnessed to address issues of experimental controls and how to design monitoring projects to increase randomization and replication of sampled data, hence increasing scientific reliability and statistical power.